39

रसायन और उर्वरक संबंधी स्थायी समिति (2022-23)

सत्रहवीं लोक सभा

रसायन और उर्वरक मंत्रालय (उर्वरक विभाग)

सतत कृषि उत्पादन और मिट्टी की गुणवत्ता बनाए रखने के लिए नैनो उर्वरक

उनतालीसवां प्रतिवेदन

लोक सभा सचिवालय

नई दिल्ली मार्च, 2023/फाल्गुन, 1944 (शक)

उनतालीसवां प्रतिवेदन

रसायन और उर्वरक संबंधी स्थायी समिति (2022-23)

(सत्रहवीं लोक सभा)

रसायन और उर्वरक मंत्रालय (उर्वरक विभाग)

सतत कृषि उत्पादन और मिट्टी की गुणवत्ता बनाए रखने के लिए नैनो उर्वरक

21.03.2023 को लोक सभा में प्रस्तुत किया गया। 21.03.2023 को राज्य सभा पटल पर रखा गया

लोक सभा सचिवालय नई दिल्ली मार्च, 2023/फाल्गुन, 1944 (शक)

विषय –सूची

प्रतिवेदन				
भाग एक				
समिति (2021-2	22) की संरचना	V		
समिति (2022-2	23) की संरचना	vii		
प्रथमाक्षर/संक्षेपाक्षर	Σ	Х		
विषय - एक	प्रस्तावना	1		
विषय - दो	नैनो उर्वरकों के संबंध में अनुसंधान और क्षेत्र परीक्षण	4		
	(i) अनुसंधान और क्षेत्र परीक्षण (ii) नैनो यूरिया के प्रयोग से फसल उपज में अंतर (iii) नैनो यूरिया का प्रभावकारिता परीक्षण (iv) अन्य नैनो उर्वरकों का विकास (v) नैनो यूरिया की प्रभावकारिता (vi) नैनो उर्वरक और पारंपरिक उर्वरक - एक तुलनात्मक विश्लेषण			
	(vii) नैनो डीएपी के संबंध में अनुसंधान परीक्षण			
विषय - तीन	नैनो उर्वरकों की प्रगतिशील यात्रा (i) नैनो यूरिया की प्रगतिशील यात्रा (ii) नैनो यूरिया का उत्पादन बढ़ाने के उपाय (iii) आयात में कमी और बल्क यूरिया की राजसहायता बचत में नैनो यूरिया के लाभ	18		
विषय – चार	नैनो यूरिया का उपयोग	25		
	(i) नैनो उर्वरकों का सर्वोत्तम उपयोग			
	(ii) नैनो यूरिया के छिड़काव की पद्धति (iii) नैनो उर्वरक छिड़काव के लिए ड्रोन की उपलब्धता (iv) ड्रोन पायलट प्रशिक्षण की आवश्यकता (v) नैनो उर्वरकों के ड्रोन स्प्रे की सुविधा के लिए कॉरपोरेट सामाजिक दायित्व (सीएसआर) निधि			

विषय – पांच	नैनो यूरिया को बढ़ावा देना	40
	(i) नैनो यूरिया को बढ़ावा देने के लिए अपनाए गए तरीके	
	(ii) नैनो उर्वरकों के लिए जांच प्रयोगशालाएँ	
	(iii) नैनो उर्वरकों का समान वितरण	
	(iv) उर्वरक के कच्चे माल पर बुनियादी सीमा शुल्क में राहत की आवश्यकता	
	भाग दो	
	टिप्पणियां/सिफारिशें	48-59
	अनुबंध	
l.	खरीफ 2021 में नैनो यूरिया (तरल) के अखिल भारतीय प्रायोगिक परिणामों का सार।	60
II.	नैनो यूरिया (तरल) के संबंध में की गई मौसम-वार/ फसल-वार प्रायोगिक जांच।	68
III.	डीबीटी नैनो दिशानिर्देशों के अनुसार इफको नैनो यूरिया (तरल) का सुरक्षा आकलन।	69
	परिशिष्ट	
I.	रसायन और उर्वरक संबंधी स्थायी (2021-22) की दिनांक 18 अप्रैल, 2022 को हुई बैठक का कार्यवाही सारांश।	71
II.	रसायन और उर्वरक संबंधी स्थायी (2021-22) की दिनांक 04 मई, 2022 को हुई बैठक का कार्यवाही सारांश।.	76
III.	रसायन और उर्वरक संबंधी स्थायी (2021-22) की दिनांक 04 अगस्त, 2022 को हुई बैठक का कार्यवाही सारांश।	80
IV.	रसायन और उर्वरक संबंधी स्थायी (2022-23) की दिनांक 14 फरवरी, 2023 को हुई बैठक का कार्यवाही सारांश।	84

रसायन और उर्वरक संबंधी स्थायी समिति की संरचना

(2021-22)

श्रीमती कनिमोझी करूणानिधि -सभापति

सदस्य लोक सभा

	-0-0-3	
2.	श्री दिव्येन्दु	आधकारा
	71117 13	11 1 1 1 1

- श्री एम .बदरूदीन अजमल
- 4. श्री दीपक बैज
- श्री रामाकान्त भार्गव
- श्री प्रतापराव पाटिल चिखलीकर
- 7. श्री राजेश नारणभाई चुड़ासमा
- श्री संजय शामराव धोत्रे
- 9. श्री रमेश चंदप्पा जिगाजिनागि
- 10. श्री कृपानाथ मल्लाह
- 11. श्री प्रभुभाई नागरभाई वसावा
- 12. श्री सत्यदेव पचौरी
- 13. श्रीमती अपरूपा पोद्दार
- 14. डॉ. एम. के. विष्णु प्रसाद
- 15. श्री अरूण कुमार सागर
- 16. श्री एम .सेल्वराज डॉ .
- 17. संजीव कुमार शिंगरी
- 18. श्री अतुल कुमार सिंह ऊर्फ अतुल राय
- 19. श्री प्रदीप कुमार सिंह
- 20. श्री उदय प्रताप सिंह
- 21 श्री इंद्रा हांग सुब्बा

राज्य सभा

- 22. श्री अयोध्या रामी रेड्डी आला
- 23. श्री जी. सी. चन्द्रशेखर
- 24. डा .अनिल जैन
- 25. श्री एम. वी. श्रेयम्स कुमार
- 26. श्री जय प्रकाश निषाद
- 27. श्री अंतियुर पी. सेल्वरासू
- 28. श्री अरूण सिंह
- 29. श्री विजय पाल सिंह तोमर
- 30. श्री के. वेंलेल्वना
- **31.** रिक्त

<u>सचिवालय</u>

 1.
 श्री विनोद कुमार त्रिपाठी
 संयुक्त सचिव

 2.
 श्री एन. के. झा
 निदेशक

 3.
 श्री सी. कल्याणसुंदरम
 अपर निदेशक

 4.
 श्री पन्नालाल
 अवर सचिव

रसायन और उर्वरक संबंधी स्थायी समिति की संरचना

(2022-23)

डॉसभापति - शशि थरूर .

सदस्य लोक सभा

- 2. श्री दिव्येन्दु अधिकारी
- 3. श्री एम बदरूदीन अजमल.
- 4. श्री सीअन्नादुरई .एन .
- श्री दीपक बैंज
- श्री रामाकान्त भार्गव
- 7. श्री प्रतापराव पाटिल चिखलीकर
- 8. श्री राजेश नारणभाई चुड़ासमा
- 9. डॉसंजय जायसवाल .
- 10. श्री रमेश चंदप्पा जिगाजिनागि
- 11. श्री कृपानाथ मल्लाह
- 12. श्री सत्यदेव पचौरी
- 13. श्रीमती अपरूपा पोद्दार
- 14. श्री अरूण कुमार सागर
- 15. श्री एम सेल्वराज.
- 16. डॉसंजीव कुमार शिंगरी .
- 17. श्री अतुल कुमार सिंह ऊर्फ अतुल राय
- 18. श्री प्रदीप कुमार सिंह
- 19. श्री उदय प्रताप सिंह
- 20. श्री इंद्रा हांग सुब्बा
- 21 श्री प्रभुभाई नागरभाई वसावा

राज्य सभा

- 22. श्री जीचन्द्रशेखर .सी .
- 23. डाअनिल जैन.
- 24. श्री अरूण सिंह
- 25. श्री राम नाथ ठाकुर*
- 26. श्री विजय पाल सिंह तोमर
- 27. रिक्त
- 28. रिक्त
- 29. रिक्त
- 30. रिक्त
- 31. रिक्त

^{*}दिनांक से मनोनीत 13.02.2023, देखिए दिनांक 14.02.2023 का लोक सभा समाचार भाग दो, पैरा संख्या 6251।

<u>सचिवालय</u>

 श्री विनय कुमार मोहन
 श्री एन. के. झा
 श्रीमती गीता परमार
 श्री पन्नालाल संयुक्त सचिव निदेशक अपर निदेशक अवर सचिव

प्राक्कथन

मैं, रसायन और उर्वरक संबंधी स्थायी सिमित (2022-23) का सभापित, सिमित की ओर से प्रतिवेदन प्रस्तुत करने के लिए प्राधिकृत किए जाने पर, उर्वरक विभाग, रसायन और उर्वरक मंत्रालय से संबंधित 'सतत कृषि उत्पादन और मिट्टी की गुणवत्ता बनाए रखने के लिए नैनो उर्वरक' संबंधी यह उनतालीसवां प्रतिवेदन (सत्रहवीं लोक सभा) प्रस्तुत करता हूं।

- 2. सिमिति (2021-22) ने 18 अप्रैल, 2022 को उर्वरक विभाग के प्रतिनिधियों का मौखिक साक्ष्य लिया। सिमिति ने 04 मई, 2022 और 04 अगस्त, 2022 को हुई अपनी बैठकों में उर्वरक विभाग, कृषि और किसान कल्याण मंत्रालय (कृषि अनुसंधान और शिक्षा विभाग (डेयर)) तथा नागर विमाणन मंत्रालय के प्रतिनिधियों का और मौखिक साक्ष्य लिया।
- 3. सिमिति ने 14 फरवरी, 2023 को हुई अपनी बैठक में प्रतिवेदन पर विचार किया और उसे स्वीकार किया।
- 4. सिमिति विषय की जांच के संबंध में अपेक्षित जानकारी सिमिति के समक्ष प्रस्तुत करने और साक्ष्य देने के लिए भारत सरकार के मंत्रालयों/विभागों के प्रतिनिधियों का आभार व्यक्त करती है।
- 5. सिमिति, सिमिति से संबद्ध लोक सभा सिचवालय के अधिकारियों द्वारा उसे प्रदान की गई महत्वपूर्ण सहायता के लिए उनकी सराहना करती है।
- 6. संदर्भ और सुविधा के लिए सिमति की टिप्पणियों/सिफारिशों को प्रतिवेदन में मोटे अक्षरों में मुद्रित किया गया है।

नई दिल्ली; 20 मार्च, 2023 29 फाल्गुन, 1944 (शक) डॉ. शशि थरूर सभापति, रसायन और उर्वरक संबंधी स्थायी समिति

प्रतिवेदन में प्रयुक्त शब्दों का प्रथमाक्षर/संक्षेपाक्षर

एआईएफ कृषि अवसंरचना निधि

एपीवीएमए आस्ट्रेलियन पेस्टीसाइड्स एंड वेटेरिनरी मेडिसिन अथॉरिटी

एटीपी-एडीपी एडेनोसिन ट्राई-फास्फेट-एडेनोसिन डाई-फास्फेट (ऊर्जा अंतरण यौगिक)

बीवीएफसीएल ब्रह्मपुत्र वैली फर्टिलाइजर कॉर्पोरेशन लिमिटेड

सीआईएआरआई, पोर्ट ब्लेयर केन्द्रीय द्वीपीय कृषि अनुसंधान संस्थान, पोर्ट ब्लेयर

सीपीएसयू सरकारी क्षेत्र के केन्द्रीय उपक्रम

सीएससीएस सामान्य सेवा केंद्र

सीएसआर कार्पोरेट सामाजिक दायित्व

सीएसएसआरआई, करनाल केन्द्रीय मृदा लवणता अनुसंधान संस्थान, करनाल

डीएपी डाई-अमोनियम फॉस्फेट

डीबीटी जैव प्रौद्योगिकी विभाग

डीबीटी-डीएसटी जैव प्रौद्योगिकी विभाग तथा विज्ञान एवं प्रौद्योगिकी विभाग

डीजी, एनआरएम महानिदेशक (प्राकृतिक संसाधन प्रबंधन)

डीजीसीए नागर विमानन महानिदेशालय

डीएनए-आरएनए डाईऑक्सीरिबॉन्यूक्लिक एसिड (डीएनए)-रिबॉन्यूक्लिक एसिड (आरएनए) (आनुवांशिक सामग्री)

डीओएफ उर्वरक विभाग

ईएफएसए द यूरोपियन फूड सेफ्टी अथॉरिटी

एफएसीटी द फर्टिलाइजर्स एंड कैमिकल्स त्रावणकोर लिमिटेड

एफएओ/डब्लूएचओ खाद्य एवं कृषि संगठन/ विश्व स्वास्थ्य संगठन

एफसीओ उर्वरक नियंत्रण आदेश

एफपीओ किसान उत्पादक संगठन

एफएसएएनजेड फूड स्टैंडर्ड्स ऑस्ट्रेलिया न्यूजीलैंड

जीएलपी बेहतर प्रयोगशाला कार्य

जीएसटी माल और सेवा कर

आईसीएआर भारतीय कृषि अनुसंधान परिषद्

आईसीएआर - सीआईएआरआई भारतीय कृषि अनुसंधान परिषद् – केन्द्रीय द्वीपीय कृषि अनुसंधान संस्थान

आईसीएआर - सीएसएसआरआई भारतीय कृषि अनुसंधान परिषद् - केन्द्रीय मृदा लवणता अनुसंधान संस्थान

आईसीएच द इंटरनेशनल काउंसिल फॉर हार्मीनाइजेशन आफ रिकायरमेंट्स फॉर फार्मास्युटिकल्स फॉर

ह्युमन यूज

इफको इंडियन फार्मर्स फर्टिलाइजर कॉपरेटिव लिमिटेड (इफको)

आईआरआरआई एसएआरसी, वाराणसी इंटरनेशनल राइस रिसर्च इंस्टीच्यूट साउथ एशिया रिजनल सेंटर, वाराणसी

आईएसओ इंटरनेशनल आर्गेनाइजेशन फॉर स्टैंडर्डिराइजेशन

केवीके कृषि विज्ञान केंद्र

एमएचए गृह मंत्रालय

एमओएएंडएफडब्लू, जीओआई कृषि एवं किसान कल्याण मंत्रालय, भारत सरकार

एमओसीए नागर विमानन मंत्रालय

एमओपी म्युरियेट आफ पोटाश

एमओयू समझौता ज्ञापन

एमआरपी अधिकतम खुदरा मूल्य

एमएसपी न्यूनतम समर्थन मूल्य

एनएआरएस राष्ट्रीय कृषि अनुसंधान प्रणाली

एनबीआरसी नैनो जैव प्रौद्योगिकी अनुसंधान केंद्र

एनसीयू नीम लेपित यूरिया

एनडीए गैर-प्रकटन समझौता

एनएफएल नेशनल फर्टिलाइजर लिमिटेड

एनएमआर न्यूक्लियर मैग्नेटिक रिजॉनेंस

एनओएईएल नो-आर्ब्जब्ड-एडवर्स-इफेक्ट-लेवल

एनपीके नाइट्रोजन, फॉस्फोरस और पोटेशियम

एनयूई न्यूट्रिंट यूज इफिसिएंसी

ओईसीडी आर्थिक सहयोग और विकास संगठन

ओईसीडी आर्थिक सहयोग और विकास संगठन

पीएलआई उत्पादन संबद्ध प्रोत्साहन

पीपीएम प्रति मिलियन पार्ट्स

पीएसयू सरकारी क्षेत्र के उपक्रम

आरएंडडी अनुसंधान और विकास

आरसीएफएल राष्ट्रीय कैमिकल्स एंड फर्टिलाइजर्स लिमिटेड

आरडीएन नाइट्रोजन की संस्तुत खुराक

आरईएसीएच रसायनों का पंजीकरण, मूल्यांकन, प्राधिकरण और प्रतिबंध

एसएयू राज्य कृषि विश्वविद्यालय

एसएमएएम कृषि यांत्रिकरण संबंधी उप मिशन

एसएमएस शार्ट मैसेज सर्विस

एसओपी मानक परिचालन प्रक्रिया

टीएफपी कुल कारक उत्पादकता

टीजी परीक्षण संबंधी दिशानिर्देश

टीएनएयू तमिलनाडु कृषि विश्वविद्यालय

टीएससीए विषैले पदार्थ नियंत्रण अधिनियम

यूएन एसडीजी संयुक्त राष्ट्र सतत विकास लक्ष्य

यूएसईपीए संयुक्त राज्य पर्यावरण संरक्षण एजेंसी

यूएसएफडीए संयुक्त राष्ट्र खाद्य और औषधि प्रशासन

प्रतिवेदन

भाग-एक विवरण

एक प्रस्तावना

- 1.1 विश्वभर में, कृषि को कई चुनौतियों जैसे कि फसल की पैदावार में वृद्धि न होना, कम पोषक तत्व उपयोग दक्षता (एनयूई), मृदा के जैविक तत्वों में कमी, बहु-पोषक तत्वों की कमी, कृषि योग्य भूमि का कम होना और पानी की उपलब्धता का सामना करना पड़ रहा है। भूमि और जल संसाधनों की कमी और क्षरण से निरंतर बढ़ती आबादी के लिए भोजन, आजीविका और पोषण सुरक्षा के लिए गंभीर चुनौती उत्पन्न होती है।
- 1.2 उर्वरक से पौधों को उनकी ईष्टतम उत्पादकता के लिए आवश्यक पोषक तत्व मिलते हैं। किसान आमतौर पर मृदा की सतह पर छिड़काव, उपसतह पर प्रयोग अथवा सिंचाई के पानी के साथ मिश्रण करके उर्वरकों को प्रयोग करते हैं। हालांकि, यूरिया जैसे अत्यधिक पारंपरिक उर्वरकों का एक बड़ा हिस्सा वायुमंडल अथवा सतही जल निकायों में मिल जाता है, जिससे पारिस्थितिकी तंत्र प्रदूषित हो जाता है।
- 1.3 भारत में, खेती के अंतर्गत अधिक क्षेत्र लाने की थोड़ी-बहुत गुंजाइश है; इसलिए, खाद्यान्न उत्पादन में वृद्धि मुख्य रूप से उत्पादकता बढ़ाकर की जानी चाहिए। हालाँकि, भारत में उर्वरक की खपत असंतुलित है, और अधिकांश फसलों पर प्रयोग होने वाले नाइट्रोजन उर्वरकों में यूरिया का हिस्सा 82% से अधिक है। परिणामस्वरूप, नाइट्रोजन, फास्फोरस और पोटेशियम (एनपीके) खपत अनुपात 2009-10 में 4:3.2:1 से बढ़कर 2019-20 में 7:2.8:1 हो गया है।
- 1.4 माननीय प्रधानमंत्री ने किसानों से अपील की है कि वे मृदा स्वास्थ्य, पर्यावरण और भावी समृद्धि के लिए खेत में यूरिया का उपयोग कम करें तािक रासायनिक उर्वरकों के उपयोग को धीरे-धीरे कम किया जा सके और अंततः मृदा स्वास्थ्य को सुरक्षित रखने के लिए उनका उपयोग बंद कर दिया जा सके। माननीय प्रधानमंत्री ने रासायनिक उर्वरकों विशेषकर यूरिया की खपत में 50 प्रतिशत की कमी लाने का आह्वान किया है।

- 1.5 इंडियन फार्मर्स फर्टिलाइजर्स कोऑपरेटिव लिमिटेड (इफको) ने पारंपिरक यूरिया के असंतुलित और अत्यधिक उपयोग को कम करने के लिए नैनो टेक्नोलॉजी आधारित नैनो यूरिया उर्वरक विकसित किया है। नैनो उर्वरक को इफको नैनो बायोटेक्नॉलॉजी रिसर्च सेंटर (एनबीआरसी) कलोल, गुजरात में स्वामित्व पेटेंट तकनीक के माध्यम से दुनिया में पहली बार देश में तैयार किया गया है। नैनो यूरिया नाइट्रोजन का एक स्रोत है जो एक पौधे के उचित वृद्धि और विकास के लिए जरूरी एक प्रमुख आवश्यक पोषक तत्व है। नाइट्रोजन एक पौधे में अमीनो एसिड, एंजाइम, आनुवंशिक सामग्री (डीएनए-आरएनए), प्रकाश संश्लेषक वर्णक (अर्थात् क्लोरोफिल) और ऊर्जा हस्तांतरण यौगिकों (एटीपी-एडीपी) का प्रमुख घटक है। आमतौर पर, एक स्वस्थ पौधे में नाइट्रोजन 1.5 से 4% होता है। एक पौधे के महत्वपूर्ण फसलीय विकास चरणों में नैनो यूरिया का पर्ण पर उपयोग प्रभावी रूप से इसकी नाइट्रोजन आवश्यकता को पूरा करता है और पारंपिरक यूरिया की तुलना में अधिक फसल उत्पादकता प्रदान करता है।
- बायोटेक्नॉलॉजी विभाग (डीबीटी), भारत सरकार के दिशानिर्देशों और 1.6 आर्थिक सहयोग और विकास संगठन (ओईसीडी) द्वारा विकसित अंतर्राष्ट्रीय दिशानिर्देश, जिन्हें विश्व स्तर पर अपनाया और स्वीकार किया जाता है, के अनुसार जैव-सुरक्षा और विषाक्तता के लिए नैनो यूरिया का परीक्षण किया गया है। नैनो यूरिया बताए गए स्तर पर उपयोग किए जाने पर मानव, जानवरों, पक्षियों, राइजोस्फीयर जीवों और पर्यावरण के लिए पूरी तरह से सुरक्षित है। कृषि एवं किसान कल्याण मंत्रालय, भारत सरकार ने 24 फरवरी, 2021 की अधिसूचना के माध्यम से उर्वरक नियंत्रण आदेश (एफसीओ) के तहत नैनो उर्वरक के रूप में नैनो यूरिया को अधिसूचित किया है और 1 अगस्त, 2021 से कलोल, गांधीनगर में इसका वाणिज्यिक उत्पादन शुरू हो गया है। इफको 2017 से नैनो उर्वरकों के अनुसंधान और विकास में लगी हुई है। उन्होंने नैनो बायोटेक्नोलॉजी रिसर्च सेंटर (एनबीआरसी), कलोल, गुजरात में नैनो उर्वरक मैक्रोन्यूट्रिएंट ग्रेड - नैनो नाइट्रोजन, नैनो डीएपी और सेकंडरी/माइक्रोन्यूट्रीएंट ग्रेड - नैनो जिंक, नैनो कॉपर, नैनो बोरान, नैनो सल्फर आदि विकसित किए हैं। इफको के अन्य नैनो उर्वरक विकास, प्रदर्शन और उर्वरक नियंत्रण आदेश (एफसीओ), भारत सरकार के अंतर्गत शामिल किए जाने हेतु विभिन्न चरणों में प्रक्रियाधीन हैं। यह आशा की जाती है कि वे अपने पारंपरिक अत्यधिक प्रयोग किए जाने वाले उर्वरकों की प्रचलित लागत की तुलना में काफी सस्ते होंगे।
- 1.8 पारंपरिक उर्वरकों की तुलना में नैनो उर्वरकों के विभिन्न लाभ इस प्रकार हैं:

- 1. मूल्य लाभ इन उर्वरकों की लागत सब्सिडी प्राप्त पारंपरिक उर्वरकों से कम होती है जिसके परिणामस्वरूप किसानों के लिए इनपुट लागत कम होती है।
- 2. **लॉजिस्टिक और भंडारण के संदर्भ में लाभ** इन्हें लाने-ले जाने और इनका भंडारण करने में आसानी होती है, इस प्रकार, ये कम परिवहन और भंडारण लागत के मामले में किफायती हैं।
- 3. बल्क उर्वरक की बचत प्रति हेक्टेयर नैनो उर्वरकों के उपयोग के साथ, सब्सिडी वाले उर्वरक बोरियों की कम आवश्यकता होती है जिससे उर्वरक लागत में बचत होती है और किसानों को अतिरिक्त आय होती है।
- 4. अतिरिक्त फसल उपज के कारण आर्थिक लाभ नैनो उर्वरकों के उपयोग से किसानों के लिए बेहतर फसल उत्पादकता और अधिक आय होती है। इफको द्वारा भारतीय कृषि अनुसंधान परिषद (आईसीएआर) कृषि विज्ञान केंद्रों (केवीके) के सहयोग से 94 फसलों पर किए गए 11,000 अखिल भारतीय किसान फील्ड परीक्षणों के आधार पर, नैनो यूरिया के उपयोग के साथ औसतन 8% अधिक फसल उपज प्राप्त की गई; जिससे किसानों को 2000 रुपये से 5000 रुपये प्रति हेक्टेयर अधिक आय होती है। अधिक मूल्य/अधिक एमएसपी वाली फसलों के मामले में आर्थिक लाभ और भी अधिक है। यह हमारे माननीय प्रधानमंत्री द्वारा की गई प्रतिबद्धता के अनुसार किसानों की आय को दोगुना करने के लिए एक साधन के रूप में कार्य करेगा। प्रति एकड़ औसतन 45 से 90 किलोग्राम कम सब्सिडी वाला यूरिया उपयोग किया जाएगा, जो किसानों के लिए कम खरीद लागत के संदर्भ में किसानों के लिए 266 रुपये 532 रुपये प्रति एकड़ लागत बचत है।
- 5. हमारी फसल उत्पादन प्रणालियों की कुल कारक उत्पादकता (टीएफपी) में वृद्धि नैनो उर्वरकों के उपयोग से बेहतर मृदा स्वास्थ्य, वायु और जल के रूप में पर्याप्त लाभ होता है जो अंततः हमारी फसल उत्पादन प्रणालियों की कुल कारक उत्पादकता (टीएफपी) में सुधार के माध्यम से किसानों को लाभान्वित करेगा।

II. नैनो उर्वरकों पर अनुसंधान एवं क्षेत्र परीक्षण

(i) अनुसंधान और क्षेत्र परीक्षण

- 2.1 नैनो उर्वरकों पर अनुसंधान और क्षेत्र परीक्षणों के संबंध में, कृषि एवं किसान कल्याण मंत्रालय, कृषि अनुसंधान और शिक्षा विभाग (डेयर) ने सूचित किया है कि इफको ने रबी फसलों के मौसम वर्ष 2019-20 से कुछ आईसीएआर संस्थानों/ राज्य कृषि विश्वविद्यालयों (एसएयू) में परीक्षण शुरू कर दिया था। हालांकि, ये परीक्षण केवल कुछ स्थानों पर किए गए थे, भारत के सभी कृषि जलवायु क्षेत्रों को कवर नहीं किया गया था। उत्पाद की कृषि संबंधी दक्षता के आधार पर, इसे अस्थायी रूप से एफसीओ में सूचीबद्ध किया गया था। इसके बाद, खरीफ फसल मौसम वर्ष 2021 में, यह महसूस किया गया कि परीक्षण भारत के सभी कृषि जलवायु क्षेत्रों में किए जाने चाहिए। तदनुसार, चयनित आईसीएआर संस्थानों में नैनो यूरिया के 20 प्रायोगिक परीक्षण पांच (5) खरीफ फसलों अर्थात् चावल (12 स्थान), मक्का (4 स्थान), मंडुआ (2 स्थान), बाजरा (1 स्थान) और अदरक (1 स्थान) पर किए गए थे। अधिकांश स्थानों में प्रयोगात्मक परीक्षणों में निम्नलिखित उपचार शामिल थे:
- 1. नाइट्रोजन (आरडीएन) की 100% अनुशंसित खुराक का उपयोग।
- 2. आरडीएन का 75% + 1 नैनो यूरिया छिड़काव।
- 3. **आरडीएन का** 75% + 2 नैनो यूरिया छिड़काव।
- 4. आरडीएन का 50% + 1 नैनो यूरिया छिड़काव।
- 5. आरडीएन का 50% + 2 नैनो यूरिया छिड़काव।
- 2.2 इसके अलावा, तीन स्थानों में अर्थात् भारतीय कृषि अनुसंधान परिषद केंद्रीय द्वीप समूह कृषि अनुसंधान संस्थान, पोर्ट ब्लेयर; (आईसीएआर-सीआईएआरआई), भारतीय कृषि अनुसंधान परिषद केन्द्रीय मृदा लवणता अनुसंधान संस्थान, करनाल; (आईसीएआर-सीएसएसआरआई), और अंतर्राष्ट्रीय चावल अनुसंधान संस्थान दक्षिण एशिया क्षेत्रीय केंद्र, वाराणसी; (आईआरआरआई एसएआरसी), प्रयोगात्मक परीक्षणों में निम्नलिखित उपचार किए गए थे:
- 1. नाइट्रोजन (आरडीएन) की 100% अनुशंसित खुराक का उपयोग।
- 2. आरडीएन का 66% + 1 नैनो यूरिया छिड़काव।

- 3. आरडीएन का 66% + 2 नैनो यूरिया छिड़काव।
- 4. आरडीएन का ३३% + 1 नैनो यूरिया छिड़काव।
- 5. आरडीएन का 33% + 2 नैनो यूरिया छिड़काव।

(ii) नैनो यूरिया के प्रयोग से फसल उपज में अंतर

2.3 चार प्रतिकृतियों के साथ एक याद्यच्छिक ब्लॉक डिजाइन में भी प्रयोग किए गए थे। खरीफ फसलों की कटाई के बाद, अनाज की पैदावार दर्ज की गई और सांख्यिकीय विश्लेषण किया गया। 100% आरडीएन उपचार में, छिड़काव के माध्यम से पारंपरिक यूरिया का प्रयोग किया गया। तथापि, नैनो यूरिया प्लाटों में नैनो यूरिया तरल का छिड़काव 2 मिलिलीटर/लीटर पानी की दर से किया गया था। नैनो यूरिया का छिड़काव फसलों के जुताई/शाखन के चरणों में किया जाता था। फसलों, उनकी किस्मों, अवधि और औसत पैदावार का ब्योरा नीचे तालिका में दिया गया है:

क्र. सं.	स्थान	फसल	क़िस्म	अवधि	औसत पैदावार (क्यू/हेक्टेयर)
VI.					(17, (1011)
1.	जीआरएफ,	मक्का	संकर -	107	30-35
	सीआरआईडीए,		डीएचएम-	दिन	
	हैदराबाद		117		
	एआईसीआरपीडीए	मंडुआ	जीपीयू-28	112	25
	केंद्र, बेंगलुरु			दिन	
	एआईसीआरपीडीए	अपलैंड	दंतेश्वरी	100	33
	केंद्र, जगदलपुर	चावल		दिन	
2.	आईआईएसआर–	अदरक	वरद	240	22 - 24
	कोझिकोड			दिन	टन/हेक्टेयर
3.	आईआरआरआई–	चावल (वर्षा	बिनधन11	125	37
	एसएआरसी-उत्तर	सिंचित)		दिन	
	प्रदेश				
	-तदेव-	चावल	एमटीयू7029	145	40
		(सिंचित)			

	आईआरआरआई–	चावल	सीआर धान	125	43
	एसएआरसी-असम	(वर्षा	311		
		सिंचित)			
4.	एनआरआरआई-	चावल	पूजा	158	40
	कटक			दिन	
5.	एसकेएनएयू-	बाजरा	आरएचबी-	70-80	25-28
	जॉबनेर		173	दिन	
6.	यूएएस जीकेवीके-	मक्का	बीआरएमएच-	120-	75
	बैंगलोर		8	125	
				दिन	
	-तदेव-	चावल	केएमपी 220	125-	55
				130	
				दिन	
7.	वीपीकेएएस-	मंडुआ	वीएल मंडुआ	100 -	25-28
	अल्मोड़ा		352	105	
	•			दिन	
8.	आरवीएसकेवीवी-	मक्का	कोमल	80-85	38-40
	इंदौर		(संकर)	दिन	
9.	एएयू-आणंद	मक्का	जीएवाईएमएच	85 –	45
			1	90 दिन	

2.4 परीक्षणों के परिणामों से संकेत मिलता है कि चावल के मामले में, नैनो यूरिया ने 1.32 से 14.5% की अतिरिक्त उपज के साथ 25-50% की सीमा में टॉप-ड्रेस्ड नाइट्रोजन की बचत की, जिससे 75 रुपये से 9832 रुपये प्रति हेक्टेयर का समग्र लाभ हुआ। मक्का के मामले में, नैनो यूरिया के उपयोग से 25-50% टॉप-ड्रेस्ड नाइट्रोजन की बचत हुई और 2 से 5% अतिरिक्त पैदावार हुई, जिसके परिणामस्वरूप 531 रुपये से 1722 रुपये प्रति हेक्टेयर के बीच समग्र लाभ हुआ। मंडुआ के मामले में, नैनो यूरिया के उपयोग से कर्नाटक में 11% अतिरिक्त उपज के साथ 25-50% टॉप-ड्रेस नाइट्रोजन की बचत हुई और उत्तराखंड में कोई उपज लाभ नहीं हुआ। बाजरा के मामले में, नैनो यूरिया के उपयोग से 25% टॉप-ड्रेस्ड नाइट्रोजन की बचत हुई और 3070 रुपये प्रति हेक्टेयर के समग्र लाभ के साथ 7% अधिक उपज का उत्पादन हुआ। कोझीकोड (केरल) में किए गए परीक्षण से 50% अनुशंसित नाइट्रोजन की

बचत हुई और 50870 रुपये प्रति हेक्टेयर के समग्र लाभ के साथ अदरक की 57% अधिक उपज का उत्पादन हुआ। अधिकांश स्थानों में नाइट्रोजन (आरडीएन), 75% आरडीएन + नैनो यूरिया, और 50% आरडीएन + नैनो यूरिया अनुप्रयोग की अनुशंसित खुराक के बीच कोई महत्वपूर्ण अंतर नहीं था। तथापि, उर्वरक बचत के मामले में सर्वोत्तम उपचार और परिणाम अनुबंध- I में संक्षेप में दिए गए हैं।

2.5 साक्ष्य के दौरान नैनो उर्वरकों के अनुप्रयोग पर विभिन्न फसलों की उपज में वृद्धि में भिन्नता के संबंध में आईसीएआर के प्रतिनिधि ने यह बताया:

"संक्षेप में, 13 स्थानों पर चावल पर परीक्षण किया गया था, मैं उत्तर, पूर्व, दक्षिण, पश्चिम और मध्य क्षेत्रों से एक उदाहरण ले रहा हूं। उदाहरण के लिए, अयोध्या में, 6.5 टन प्रति हेक्टेयर कुल उपज प्राप्त हुई। नैनो यूरिया के उपयोग के लिए अतिरिक्त लागत 1200 रुपये थी, लेकिन मानक तरीके से आर्थिक व्यवस्था की गणना करने के बाद कुल लाभ 7530 रुपये था और सबसे बड़ा लाभ टॉप-ड्रेस नाइट्रोजन में बचत के मामले में था और यह 50 प्रतिशत तक था। इसी तरह की प्रवृत्ति विभिन्न स्थानों पर पायी गयी जहां बचत ३३ से ५० प्रतिशत तक थी। एक स्थान पर, यह २५ प्रतिशत थी। लेकिन अधिकांश स्थानों पर, अतिरिक्त लागत के अलावा, नैनो यूरिया एप्लिकेशन किसानों को लाभ देने में सक्षम था। कुछ अन्य फसलों में भी यही प्रवृत्ति देखी गई। दूसरी फसल मक्का थी जिसे गुजरात में आणंद, तेलंगाना में हैदराबाद, मध्य प्रदेश में इंदौर और कर्नाटक में बेंगलुरु जैसे चार स्थानों पर परीक्षण किया गया था। यहां भी, नैनो यूरिया के मामले में आने वाली अतिरिक्त लागत विभिन्न स्थानों पर 800 रुपये से 1400 रुपये थी, लेकिन कुल लाभ भी 300 रुपये से 1700 रुपये के बीच था। इसके अलावा, इसमें नाइट्रोजन की भारी बचत हुई। इसलिए, मक्का की फसल में टॉप-ड़ेस नाइट्रोजन बचत 25 से 50 प्रतिशत के बीच थी।"

2.6 इस संदर्भ में, उन्होंने यह भी बताया:

"यदि मैं इन सभी परीक्षणों को एक साथ लूँ और सारांश दूं, तो चावल में, नैनो यूरिया ने 1.3 से 14.5 प्रतिशत की अतिरिक्त उपज के साथ 25 से 50 प्रतिशत की सीमा में टॉप-ड्रेस नाइट्रोजन की बचत हुई, जिससे कुल लाभ 750 रुपये से 9832 रुपये तक हुआ। मक्का की फसल के मामले में, नैनो यूरिया के प्रयोग से 25 से 50 प्रतिशत नाइट्रोजन की बचत हुई और 2 से 5 प्रतिशत अतिरिक्त उपज प्राप्त की, जिसकी लाभ सीमा 531 रुपये से 1700 रुपये प्रति हेक्टेयर के बीच रही। मंडुआ में भी, इसी तरह के परिणाम प्राप्त हुए। इसने कर्नाटक में 11 प्रतिशत अतिरिक्त उपज के साथ 25 से 50 प्रतिशत टॉप-ड्रेस नाइट्रोजन की बचत हुई। अल्मोड़ा में पैदावार बढ़ी। बाजरा में, नैनो यूरिया से 25 प्रतिशत टॉप-ड्रेस नाइट्रोजन की बचत हुई और 3000 रुपये प्रति हेक्टेयर के समग्र लाभ के साथ सात प्रतिशत अधिक उपज का उत्पादन किया। केरल के कोझिकोड में किए गए परीक्षणों ने 50 प्रतिशत अनुशंसित नाइट्रोजन की बचत की और 57 प्रतिशत अधिक उपज प्राप्त हुई और कुल लाभ 50,000 रुपये प्रति हेक्टेयर से अधिक था। यदि आप वैज्ञानिक रूप से देखें, तो नाइट्रोजन की अनुशंसित खुराक और नैनो यूरिया के साथ आरडीएन के 75 प्रतिशत और नैनो यूरिया अनुप्रयोग के साथ 50 प्रतिशत आरडीएन के बीच कोई महत्वपूर्ण अंतर नहीं था, लेकिन वास्तविक बचत टॉप-ड्रेस नाइट्रोजन के संदर्भ में थी जो विभिन्न स्थानों में 25 से 50 प्रतिशत के बीच थी। तथापि, तीन से आठ प्रतिशत के बीच पैदावार बढ़ने से नैनो यूरिया अनुप्रयोग में शामिल छोटी अतिरिक्त लागत की भरपाई हुई है और नैनो यूरिया अनुप्रयोग के कारण टॉप-ड्रेस नाइट्रोजन में 25 से 50 प्रतिशत की बचत देखी गई है। इसलिए, ये संक्षेप में परिणाम हैं। जैसा कि सचिव महोदय ने कहा है, रबी फसलों के परिणाम शीघ्र ही आने की आशा है। गेहूं की फसल अब काटी जा रही है।"

2.7 सिमिति ने यह जानना चाहा कि क्या नैनो यूरिया के उपयोग पर फसलों की उपज में इस तरह के अंतर के कारणों का आकलन करने के लिए कोई अध्ययन किया गया है। डेयर के एक प्रतिनिधि ने निम्नवत् बताया:

".... हमारे द्वारा जो ट्रायल्स किए गए थे, निश्चित रूप से हम एक एग्रो क्लाइमेटिक जोन में एक ही ट्रायल कर पाए हैं। ज्यादातर एक ही ट्रायल साइट रहा है। आने वाले सीजन में ज्यादा ट्रायल्स एक्सपेंड किए जा सकते हैं। विशेष रूप से धान में मल्टीपल साइट्स रहे हैं और अलग-अलग एग्रो क्लाइमेटिक जोन्स हैं तथा वैरायटी भी अलग है, क्योंकि जो वैरायटी असम में उगाई जाती है या ओडिशा में उगाई जाती है, वह दिल्ली में नहीं उगाई जाती है। यह डेटा बताता है कि इस तरह से अलग-अलग किस्म अलग-अलग रिस्पॉन्स दिखाती है। यह कोई गलत बात नहीं है,

बिल्क यह फैक्ट है कि अलग-अलग एग्रो क्लाइमेटिक जोन में एक ही फसल की अलग-अलग किस्में अपना अलग रिस्पॉन्स दिखाती हैं। इसी तरह से यील्ड एडवांटेज है और उसका अलग-अलग रिस्पॉन्स है। यह सच्चाई है।"

2.8 इसी तरह के प्रश्न के लिए, सिचव, डेयर और महानिदेशक, आईसीएआर ने निम्नवत् प्रस्तुत किया:

"यह लोकेशन की बात थी। यह अलग-अलग लोकेशन में किया जा सकता है और हम इसे करेंगे। महोदय, जहां तक सॉइल की बात है तो हम सेम सॉइल में शत-प्रतिशत जो रेकमेंडेड नाइट्रोजन डोज है, वह देते हैं और उसके साथ तुलना करते हैं। एक लोकेशन में सॉइल का इफैक्ट सेम है, क्योंकि सॉइल सेम है और हम रेकमेंडेड नाइट्रोजन डोज के साथ 50 प्रतिशत कम देकर नैनो एरिया रिप्लेस करके तुलना कर रहे हैं, इसलिए उसमें सॉइल का इफैक्ट नहीं है, क्योंकि वह सेम सॉइल है और उसका कम्पेरिजन हो रहा है। एक ही जगह दोनों उगाए जाते हैं और दोनों का कम्पेरिजन किया जाता है।"

2.9 जहां तक फसलों/सब्जियों/फलों आदि की अन्य किस्मों पर क्षेत्र परीक्षण करने के लिए किए जा रहे प्रयासों का संबंध है, सचिव डेयर ने निम्नवत् बताया:

"दरअसल, इन परीक्षणों की योजना नीति आयोग की भागीदारी के साथ बनाई गई थी इसलिए, प्रारंभिक परीक्षणों के लिए, हमने यह योजना बनाई कि हमें सभी कृषि-जलवायु क्षेत्रों को कम से कम एक स्थल के साथ और दोनों मौसमों में शामिल करना चाहिए। इस प्रकार, देर हो चुकी है। जाहिर है, जब हम दोनों मौसमों का आंकड़ा लेते हैं, तो हमने जो फसल आजमाई है, वह बढ़ेगी। इसमें मौसमी फसलें और मुख्य फसलें दोनों शामिल होंगी। जैसा कि आपने ठीक ही कहा है, सब्जियों जैसी कई फसलें हैं जिनका आपने उल्लेख किया है।"

2.10 साक्ष्य के दौरान, जब अधिक फसलों पर नैनो उर्वरकों के प्रभाव का परीक्षण करने के लिए किसी और योजना के बारे में पूछा गया, तो इफको के प्रतिनिधि ने निम्नवत् बताया:

"गन्ने के परिणाम बहुत अच्छे हैं। हम पहले ही 94 फसलों का परीक्षण कर चुके हैं। पूरे देश में, हम परीक्षण आयोजित कर रहे हैं। हम अपने आईसीएआर निदेशक, डीडीजी के बहुत आभारी हैं। दोनों डीडीजी मौजूद हैं। उन्होंने इसमें हमें पूरा समर्थन दिया है। यहां तक कि सभी केवीके भी हमारे परीक्षणों की निगरानी कर रहे हैं। उन्होंने बहुत उत्साहजनक प्रतिवेदन दिया है। हर जगह से हमें बहुत अच्छा परिणाम मिला। मैंने कोई नकारात्मक प्रभाव नहीं देखा है। हमें आशा है कि हमारा डीएपी, डीएपी के बोझ को भी कम करेगा। यह मेरी महत्वाकांक्षा है।"

2.11 सिमिति ने यह भी जानना चाहा कि क्या देश के विभिन्न भागों में फसलों पर नैनो यूरिया के साथ गहन क्षेत्र परीक्षण किए जा रहे हैं, जहां उन्हें व्यापक रूप से बोया जाता है और उनकी भरपूर उपज होती है। और यह भी कि नैनो यूरिया पर क्षेत्र परीक्षण करते समय किसानों को जारी किए गए 11 करोड़ मृदा स्वास्थ्य कार्डों का उपयोग कैसे किया जा रहा है। इस संबंध में, सिचव, डेयर ने निम्नलिखित प्रस्तुत किया:

"महोदय, सॉइल हेल्थ कार्ड के हिसाब से किसान कई जगह अपने नाइट्रोजन एप्लीकेशन में परिवर्तन कर रहे हैं और उसमें कई जगह सेविंग भी है। नीमकोटेड यूरिया भी इस्तेमाल किया गया है और सॉइल हेल्थ कार्ड के हिसाब से भी फर्टिलाइजर यूज हो रहा है। महोदय, हम जहां भी ट्रायल करते हैं और वहां की सॉइल का जो स्टेटस होता है, उसको हम जरूर ध्यान रखते हैं, उसके बिना आगे एक्सपेरिमेंट नहीं होता है। हम सॉइल का स्टेटस पता करते ही हैं। हम जहां करते हैं, वहां रेकमेंडेड नाइट्रोजन डोज शत-प्रतिशत देते हैं और फिर 50 प्रतिशत कम करके नैनो यूरिया देकर कम्पेयर करते हैं। वहां इस तरह से स्टडी होती है। इसके अलावा कुछ और प्रश्न किए गए हैं। शुगर केन का प्रश्न किया गया है। शुगर केन में भी कृषि विज्ञान केन्द्रों की तरफ से काम हुआ है और किसानों के जो अवेयरनेस प्रोग्राम्स हैं और ट्रेनिंग्स हैं, उसके अंतर्गत हमारे कृषि विज्ञान केन्द्रों में नैनो यूरिया का डेमोन्स्ट्रेशन किया गया है और यह आईसीएआर और ईफको ने मिलकर किया है। सारे कृषि विज्ञान केन्द्र उसमें इन्वॉल्व थे। किसानों के खेतों में डेमोन्स्ट्रेशन किया गया

है। वहां उनको उसका फायदा भी दिखाया है। 1000 लोकेशन्स पर ये डेमोन्स्ट्रेशन किए गए हैं। ये दो वर्ष के लिए किए गए हैं और कृषि विज्ञान केन्द्र में इनके लिए अवेयरनेस प्रोग्राम भी किए गए हैं और आगे भी किए जाएंगे।"

(iii) नैनो यूरिया के प्रभावकारिता परीक्षण

2.12 सिमिति यह जानना चाहती थी कि क्या नैनो उर्वरकों की प्रभावकारिता का पता लगाने के लिए अब तक किए गए क्षेत्र परीक्षण वाणिज्यिक उत्पादन और किसानों द्वारा उपयोग के लिए इसे प्राधिकृत किए जाने से पहले पर्याप्त हैं। इसके उत्तर में, यह कहा गया है कि इफको ने नैनो यूरिया के लिए रबी मौसम वर्ष 2019-20 (अनुबंध-II) के बाद से विभिन्न कृषि-जलवायु क्षेत्रों के तहत आईसीएआर संस्थानों और राज्य कृषि विश्वविद्यालयों के साथ राष्ट्रीय कृषि अनुसंधान प्रणाली (एनएआरएस) के तहत पर्याप्त संख्या में बहु-स्थान और बहु-फसल "ऑन-स्टेशन" और "ऑन फार्म" प्रभावकारिता परीक्षण किए थे। इन सफल परीक्षणों और वैज्ञानिक प्रतिवेदनों के आधार पर नैनो यूरिया को दिनांक 24.02.2021 को उर्वरक नियंत्रण आदेश (एफसीओ), भारत सरकार के अंतर्गत पहले ही शामिल किया जा चुका है।

(iv) अन्य नैनो उर्वरकों का विकास

2.13 नैनो-डीएपी, नैनो जिंक, नैनो बोरान आदि जैसे अन्य नैनो उर्वरकों के विकास के लिए किए जा रहे अनुसंधान और विकास संबंधी प्रयासों तथा किसानों द्वारा उपयोग के लिए इन नैनो उर्वरकों को बाजार में लाए जाने की समय-सीमा के बारे में पूछे जाने पर विभाग ने अपने उत्तर में यह कहा है कि नैनो डीएपी, नैनो जिंक, नैनो कॉपर जैसे नैनो उर्वरकों के निर्माण के साथ-साथ राष्ट्रीय कृषि अनुसंधान प्रणाली (एनएआरएस) के अंतर्गत किए गए प्रयोगों के माध्यम से उनकी प्रभावकारिता स्थापित करने के लिए निरंतर अनुसंधान और विकास संबंधी प्रयास किए गए हैं। इन नैनो उर्वरकों के जैव-प्रभावकारिता-जैव सुरक्षा-जैव विषैलेपन परीक्षणों को प्रोत्साहित करने के मद्देनजर उर्वरक नियंत्रण आदेश (एफसीओ), भारत सरकार में पूर्व में शामिल करने के लिए संयुक्त सचिव (आईएनएम), एम/ओए एंड एफडब्ल्यू, भारत सरकार को प्रतिवेदन प्रस्तुत कर दिए गए हैं।

(v) नैनो यूरिया की प्रभावकारिता

2.14 विभिन्न जलवायु परिस्थितियों, मृदा आदि में विभिन्न फसलों पर नैनो उर्वरकों की प्रभावशीलता के संबंध में, विभाग ने यह स्पष्ट किया है कि राष्ट्रीय कृषि अनुसंधान प्रणाली

(एनएआरएस) के अंतर्गत किए गए परीक्षणों के अनुसार विभिन्न कृषि-जलवायु क्षेत्रों में विभिन्न फसलों पर नैनो उर्वरक प्रभावी पाए गए हैं।

2.15 विभिन्न कृषि अनुसंधान संस्थानों/राज्य कृषि विश्वविद्यालयों (एसएयू) द्वारा क्षेत्र परीक्षणों के दायरे का विस्तार करने के लिए किए जा रहे प्रयासों के संबंध में, तािक समयबद्ध तरीक से इसकी प्रभावकारिता का विश्लेषण करने के लिए विभिन्न कृषि-जलवायु क्षेत्रों में देश की सभी खाद्य फसलों को शािमल किया जा सके, डेयर ने यह कहा है कि देश के विभिन्न कृषि-जलवायु क्षेत्रों में प्रमुख फसलों पर प्रयोग किए गए हैं। नैनो उर्वरकों के उपयोग का दायरा किसानों द्वारा "प्रत्यक्ष को प्रमाण की आवश्यकता नहीं" के रूप में क्षेत्र परीक्षण करके और किसानों के लिए नैनो उर्वरकों की उपलब्धता में वृद्धि करके भी बढ़ाया जा सकता है।

2.16 यह भी कहा गया है कि वर्ष 2021-22 के दौरान, देश भर में नैनो यूरिया की 290 लाख बोतलों (500 मिलिलीटर) का विपणन किया गया है और इसके परिणामस्वरूप विभिन्न फसल भौगोलिक क्षेत्रों और विभिन्न मौसमों (खरीफ, रबी और जायद) के किसानों को बेहतर उत्पादकता और लाभप्रदता के संदर्भ में इसके प्रयोग से लाभ हुआ है। वर्तमान में, आईसीएआर संस्थानों, एसएयू और आईसीएआर-केवीके के सहयोग से विभिन्न कृषि जलवायु क्षेत्रों के तहत देश की प्रमुख उर्वरक खपत वाली फसलों में नैनो उर्वरक परीक्षण करने के प्रयास किए गए थे। इफको ने देश के प्रमुख कृषि जलवायु क्षेत्रों के तहत 94 फसलों पर 22 से अधिक अनुसंधान संस्थानों, एसएयू और आईसीएआर-केवीके के साथ 13,000 नैनो यूरिया "ऑन फार्म" और "ऑन स्टेशन" बहु-मौसमी परीक्षण किए थे।

(vi) नैनो उर्वरक और पारंपरिक उर्वरक - एक तुलनात्मक विश्लेषण

2.17 सिमिति यह जानना चाहती थी कि नैनो उर्वरकों के उपयोग से पारंपिरक यूरिया और अन्य उर्वरकों के असंतुलित और अत्यिधक उपयोग के मुद्दे का समाधान कैसे होगा। इसके उत्तर में, यह बताया गया है कि किए गए क्षेत्र परीक्षणों/अनुसंधान के आधार पर, यह देखा गया कि अधिकांश कृषि रूप से महत्वपूर्ण राज्यों जैसे पंजाब, हिरयाणा, तेलंगाना, उत्तर प्रदेश, बिहार, उत्तराखंड में पारंपिरक यूरिया का अत्यिधक उपयोग किया जाता है। पोषक तत्वों के असंतुलित अनुप्रयोग के कारण एनपीके अनुपात 4:2:1 के आदर्श एनपीके अनुपात से अत्यिधक विषम और विकृत है। एनपीके अनुपात में नाइट्रोजन का उच्च मूल्य नाइट्रोजन के असंतुलित अनुप्रयोग को दर्शाता है अर्थात् पारंपिरक यूरिया अन्य

आवश्यक पोषक तत्वों की लागत पर अनुशंसित खुराक से ऊपर है। ये भिन्नताएं क्षेत्रीय, ब्लॉक और जिला स्तर पर अधिक स्पष्ट हैं। चूंकि पारंपरिक यूरिया किसानों के लिए जेब के अनुकूल मूल्य पर उपलब्ध है और वे अनुशंसित खुराक से अधिक यूरिया का उपयोग करते हैं। नैनो यूरिया की लागत यूरिया की लागत से भी कम है और किसान आदर्श एन:पी:के के अनुपात से समझौता किए बिना खुशी से इसका उपयोग करेंगे। नैनो यूरिया के सटीक और लक्षित अनुप्रयोग के साथ उच्च नाइट्रोजन उपयोग दक्षता (एनयूई) पारंपरिक यूरिया और अन्य उर्वरकों के असंतुलित और अत्यधिक उपयोग को ठीक कर सकती है जिससे एनपीके अनुपात में सुधार और बेहतर फसल उत्पादकता हो सकती है।

2.18 इस विशिष्ट प्रश्न पर कि नैनो उर्वरकों के उपयोग से विभिन्न फसलों की फसल उत्पादकता, मृदा स्वास्थ्य और पोषण गुणवत्ता में किस हद तक सुधार होगा, यह उत्तर दिया गया है कि ऑन स्टेशन और ऑन फार्म परीक्षणों के आधार पर, यह अनुमान लगाया गया है कि विभिन्न फसलों में नैनो यूरिया के उपयोग के माध्यम से औसतन 8% उपज वृद्धि संभव है। हालांकि, परिणाम फसल, मृदा और कृषि-जलवायु परिस्थितियों के साथ-साथ प्रबंधन प्रथाओं के प्रकार के साथ भिन्न होते हैं। अनुसंधान परीक्षणों के अनुसार, महत्वपूर्ण विकास चरणों में नैनो यूरिया के पर्णीय अनुप्रयोग से गेहूं में 3-23%, चावल में 3-24%, मक्का में 2-15%, टमाटर में 5-11%, खीरे में 5% तक और शिमला मिर्च में 18% तक फसल उपज में वृद्धि होती है। इसके अलावा अनुसंधान संस्थानों/राज्य कृषि प्रतिवेदनों के अनुसार, नैनो उर्वरकों के प्रयोग से ईसी, पीएच, कार्बनिक कार्बन और उपलब्ध पोषक तत्वों के संदर्भ में मृदा के स्वास्थ्य पर कोई नकारात्मक प्रभाव नहीं पड़ता है। नैनो उर्वरकों के पर्णीय अनुप्रयोग के कारण मूल बायोमास में वृद्धि हुई है। इसके अलावा, नैनो उर्वरक उपचारित भूखंडों के काटे गए अनाज ने पोषण सामग्री और खनिज सामग्री में वृद्धि दर्ज की है।

2.19 जहां तक नैनो उर्वरक की प्रभावकारिता का संबंध है, यह भी कहा गया है कि नैनो यूरिया के पर्ण अनुप्रयोग की उपयोग दक्षता 80% से अधिक है। महत्वपूर्ण फसल विकास चरणों में पर्ण स्प्रे के माध्यम से नैनो यूरिया यूरिया की आवश्यकता को प्रभावी ढंग से 50% तक कम कर सकता है। इस प्रकार, नैनो यूरिया की एक 500 मिलिलीटर बोतल के प्रयोग से प्रति एकड़ 1 बैग (45 किलोग्राम) यूरिया कम किया जा सकता है। हर वर्ष 330 लाख मीट्रिक टन यूरिया की औसत खपत और यूरिया के 25-50% तक लिक्षत प्रतिस्थापन के साथ, नैनो

यूरिया द्वारा कम से कम 83 लाख मीट्रिक टन से 165 लाख मीट्रिक टन यूरिया कम होने की आशा है।

2.20 साक्ष्य के दौरान, सिमति की उत्पादन, मृदा और स्वास्थ्य पर नैनो उर्वरकों के प्रभाव और खाद्य फसलों के प्रभाव के बारे में जानने की इच्छा थी, इसके उत्तर में इफको के प्रतिनिधि ने निम्नवत् बताया:

"दरअसल, गुणवत्ता में वृद्धि की गई है। हमने सेब, अनाज, दालें, सब्जियां आदि जैसी कई फसलों में इसका परीक्षण किया है। गुणवत्ता के स्तर में वृद्धि हो रही है। कश्मीर के सेब का ही उदाहरण ले लीजिए, हमने शेर-ए-कश्मीर यूनिवर्सिटी में परीक्षण किया है, दृढ़ता और मिठास बढ़ गई है, जबिक अम्लीयता कम हो गई है. नैनो के उपयोग से सभी पोषक तत्व का मापदंड बढ़ रहा है। इसलिए सेहत को कोई नुकसान नहीं है।"

- 2.21 इस संदर्भ में, उर्वरक विभाग ने यह कहा है कि अनुमोदित एनएबीएल मान्यताप्राप्त, जीएलपी प्रमाणित प्रयोगशालाओं द्वारा भारतीय खाद्य सुरक्षा एवं मानक प्राधिकरण (एफएसएसएआई) पर आधारित डीबीटी दिशानिर्देशों के अनुसार नैनो उर्वरकों द्वारा उपचारित फसलों के अनाज/कटाई उत्पाद का पोषण गुणवत्ता और जैव-सुरक्षा के लिए परीक्षण किया गया है और उन्हें उपभोग के लिए सुरक्षित पाया गया है। संपूर्ण प्रतिवेदन सीएफसी-डीबीटी-आईसीएआर सिमित (अनुबंध-III) को प्रस्तुत किया गया था।
- 2.22 जहां तक विभिन्न फसलों की पोषण गुणवत्ता पर नैनो उर्वरकों के उपयोग के दीर्घकालिक प्रभावों का संबंध है, डेयर ने यह कहा है कि किए जा रहे अनुसंधान परीक्षणों ने एक वर्ष पूरा कर लिया है और ज्यादातर मामलों में केवल एक मौसम है। अत: विभिन्न फसलों की पोषण गुणवत्ता पर नैनो उर्वरकों के उपयोग के दीर्घकालिक प्रभावों को इसके आधार पर तैयार नहीं किया जा सकता है। एफएसएसएआई के पोषण विश्लेषण दिशानिर्देशों के अनुसार खाद्य विषाक्तता, पोषण मूल्य और मानव सुरक्षा परीक्षण नैनो उर्वरकों के साथ उपचारित फसलों की कटाई उपज के लिए आयोजित किए गए थे और मानव और पशु उपभोग के लिए सुरिक्षत पाए गए थे।
- 2.23 पर्यावरण के लिए नैनो यूरिया के लाभों के बारे में विस्तार से बताते हुए उर्वरक विभाग के प्रतिनिधि ने निम्नवत् कहा:

"पर्यावरण के अनुकूल लाभ, यदि आप संयंत्र की क्षमता और संयंत्र के काम करने के तरीके और विशिष्ट ऊर्जा खपत, सीओ 2 उत्सर्जन को देखते हैं, तो इसका पर्यावरण के लिए बहुत बड़ा लाभ है। जहां तक ग्रीन हाउस गैसों के उत्सर्जन पर नैनो यूरिया के प्रभाव का संबंध है, मेरा यह मानना है कि आईआरआरआई मौजूद है और उन्हें अपने अंतरिम प्रतिवेदन में जो कुछ भी कहा गया है उसे साझा करने में बहुत प्रसन्नता होगी कि यदि भारत के 50 प्रतिशत चावल की खेती वाले क्षेत्र को नैनो यूरिया के अंतर्गत लाया जाता है, तो इससे ग्रीन हाउस गैस उत्सर्जन में 4.6 मिलियन टन की कमी आएगी। यह एक अंतरिम प्रतिवेदन है, लेकिन यह निश्चित रूप से राष्ट्र को दिए गए अवसर के संदर्भ में परिवर्तनकारी है यदि हम बर्बाद हो रहे यूरिया का 20–30 प्रतिशत भी बदल सकते हैं और इसका उपयोग किया जा सकता है, तो ग्रीन हाउस गैस उत्सर्जन का उचित रूप से समाधान किया जा सकता है।"

2.24 मानव स्वास्थ्य, मिट्टी, पर्यावरण, जल निकायों और समुद्री जीवन, आदि पर नैनो-उर्वरकों के उपयोग के दुष्प्रभाव, यदि कोई हो, के बारे में समिति द्वारा व्यक्त की गई चिंता पर प्रतिक्रिया व्यक्त करते हुए; इफको के प्रतिनिधि ने निम्नलिखित उत्तर दिया:

"हमने एनएबीएल मान्यता प्राप्त और जीएलपी प्रमाणित प्रयोगशालाओं के सहयोग से व्यापक विषाक्तता जैव-सुरक्षा अध्ययन किया है। डीबीटी द्वारा 15 बुनियादी परीक्षण दिशानिर्देश दिए गए थे। लेकिन हमने बड़े पैमाने पर जांच की है और 21 दिशानिर्देशों के तहत इसका परीक्षण किया है।

मानव स्वास्थ्य सुरक्षा से शुरू होकर, यह पर्यावरण सुरक्षा थी और पैकेजिंग संगतता परीक्षण भी था। हमने अतिरिक्त सुरक्षा आकलन किया है। मानव स्वास्थ्य सुरक्षा की बात करें तो, हमने त्वचीय विषाक्तता को ध्यान में रखा है। इसलिए, इन दिशा-निर्देशों का पालन किया गया।

इसिलए, इन दिशानिर्देशों या ओईसीडी प्रोटोकॉल का पालन किया गया और डीबीटी के अनुसार, हमने अध्ययन शुरू किए हैं। ये वे अध्ययन हैं जो हमने किए हैं: मानव सुरक्षा के लिए त्वचा अवशोषण अध्ययन, आंखों में जलन की जांच, नैनोकणों का साँस लेना विषाक्तता अध्ययन यदि आप छिड़काव कर रहे हैं, जीनोटॉक्सिसिटी अध्ययन, साइटोटॉक्सिसिटी अध्ययन। हमने इन अध्ययनों को बड़े पैमाने पर किया है।

इसके अलावा, पर्यावरण सुरक्षा परीक्षण भी होता है। यह पर्यावरण के संपर्क में है। जैसा कि आप भी कह रहे हैं, यह पानी और इन सभी चीजों में जा रहा है। अत:, हमने निम्नलिखित पर्यावरण सुरक्षा अध्ययन किए हैं। वे हैं: ताजे पानी के एलाा में निषेध परीक्षण, डैफ्निया में स्थिरीकरण परीक्षण, उष्णकटिबंधीय मछली में विषाक्तता, मछली भ्रूण विषाक्तता अध्ययन, केंचुआ प्रजनन अध्ययन, जलीय, मानव और पर्यावरण सुरक्षा के लिए नैनो सामग्रियों का स्थिरता परीक्षण, मृदा – जल लीचिंग – मृदा पर छिड़काव अध्ययन, मिट्टी – पानी लीचिंग – पौधे पर छिड़काव।

इसके अलावा, हमने पैकेजिंग संगतता परीक्षण किया है। वे हैं: पैकेजिंग संगतता परीक्षण, जो बहुत महत्वपूर्ण है। यह ओईसीडी पर्यावरण के अनुसार किया गया है, और सभी आईएसओ प्रमाणपत्रों का पालन किया गया था।

हमने अतिरिक्त सुरक्षा मूल्यांकन किया है। यह डीबीटी द्वारा 15 परीक्षण दिशानिर्देशों के अलावा है।

हमने रोगाणुओं पर विषाक्तता, चूहों और चूजों पर विषाक्तता, माइक्रोबियल संदूषण अध्ययन, नाइट्रोजन के एनएमआर विश्लेषण के लिए गए हैं। हमने उसके व्यवहार अनुसार कार्य किया है। तत्पश्चात, हमने एफएसएसएआई से प्लांट अपटेक स्टडीज और पोषण संबंधी विश्लेषण किया है।

हमने ये सभी परीक्षण अध्ययन किए हैं। यह देखा गया कि यह सुरिक्षत है। इसे जोड़ने के लिए, इन डीबीटी नैनो दिशानिर्देशों को रीच, ओईसीडी, यूएसईपीए, टीएससीए, एपीवीएमए, एफएओ/डब्ल्यूएचओ, यूएसएफडीए, ईएफएसए, एफएसएएनजेड और कोडेक्स के अंतर्राष्ट्रीय दिशानिर्देशों और आईसीएच के सिद्धांतों के अनुसार सुसंगत किया गया है। महोदय, ये सब किया गया है। मंत्रालय को व्यापक प्रतिवेदन प्रस्तुत कर दिए गए हैं।"

2.25 समिति ने यह भी जानना चाहा कि क्या किसानों द्वारा सांस में ली गई नैनो उर्वरकों के छिड़काव के श्वसन तंत्र पर बूंदों के रूप में पड़ने वाले प्रभाव का आकलन करने के लिए कोई विश्लेषण किया गया था। इस संबंध में, इफको के प्रतिनिधि ने निम्नलिखित प्रस्तुत किया:

"महोदय, एहतियात के तौर पर हमने मास्क लगाने की सिफारिश की है, लेकिन व्यावहारिक रूप से आप ऑक्सीजन ले रहे हैं क्योंकि आप उस हवा में सांस ले रहे हैं जिसमें नाइट्रोजन है। इसका कोई दीर्घकालिक प्रभाव नहीं पड़ रहा है। तो, इन नैनो कणों का कोई दीर्घकालिक प्रभाव कैसे होगा? इसके अलावा, आप इस नैनो यूरिया को ला सकते हैं। यह केवल प्रोटीन है जो अंदर जाएगा। व्यावहारिक रूप से, हमें अपने वैज्ञानिकों और इंजीनियरों के अपने प्रयासों पर गर्व होना चाहिए। उन्होंने कुछ बनाया है। यूरिया को 120 वर्ष पहले बनाया गया था और इन 120 वर्षों में इतना विकास हुआ है। हमने नैनो पर एक कदम उठाया है। इसके साथ, कल, भारत एक बड़ा केंद्र बन सकता है जिसे दुनिया नैनो यूरिया या नैनो उर्वरक के लिए अनुसरण करना शुरू कर सकती है। यही कारण है कि हम नैनो में आ रहे हैं। डीएपी हमारा प्रयास है। जब हमें माननीय संसद सदस्यों का समर्थन प्राप्त होगा, जब हमें अपनी सरकार से समर्थन प्राप्त होगा, जब हमें किसानों का समर्थन प्राप्त होगा, तो यह प्रौद्योगिकी में परिवर्तनकारी बन सकता है। आज सबसे बड़ी समस्या पर्यावरण, ग्लोबल वार्मिंग की है। अगर हमें मानवता को बचाना है तो हमें यूरिया की खपत कम करनी होगी। यूरिया एनओ2 के रूप में बड़ा प्रदूषक है जो इससे निकलता है। यही कारण है कि अंतर्राष्ट्रीय चावल अनुसंधान संस्थान ने अपनी सिफारिशें दी हैं। विज्ञान में उनसे बड़ा कोई नहीं है। अत: महोदय, मैं कहंगा कि हमारे देश में जो कुछ हुआ है उस पर हमें गर्व करना चाहिए।"

2.26 साक्षी ने आगे निम्नवत् कहा:

"महोदय, इसमें केवल चार प्रतिशत नाइट्रोजन है। जितना यूरिया का एक बैग प्रभावी है यह भी उतना ही प्रभावी है। यूरिया 5000 पीपीएम के बाद विषाक्त हो जाता है। 5000 पीपीएम और तीन महीने के एक्सपोजर के बाद, बेबी सिंड्रोम नामक एक बीमारी देखी जा सकती है। तो, यहां हम केवल 80 पीपीएम से 10 पीपीएम का उपयोग कर रहे हैं। किसी भी विषाक्तता का कोई मुद्दा नहीं है। इसलिए, हमने सब कुछ परीक्षण किया है........"

2.27 यह देखते हुए कि नैनो उर्वरक एक नई तकनीक है और अब तक केवल अल्पकालिक अध्ययन किए गए हैं, सिमिति ने दीर्घकालिक अध्ययन की आवश्यकता व्यक्त की ताकि इसके दीर्घकालिक प्रभावों का विश्लेषण किया जा सके, इफको के प्रतिनिधि ने निम्नवत् उत्तर दिया:

"आप बिल्कुल सही कह रहे हैं... हम यहीं नहीं रुके हैं। इतने सारे कृषि अनुसंधान संस्थान लगातार अपनी पढ़ाई कर रहे हैं। उनमें से एक टीएनएयू है। कुछ और विश्वविद्यालय भी अपनी पढ़ाई कर रहे हैं। डीडीजी, एनआरएम भी इसे देख रहे हैं और उन्होंने मुझे परीक्षण करने का काम दिया है। हमने कई संस्थानों में परीक्षण किए हैं और भविष्य में भी हम ऐसा करेंगे। हम नहीं रुकेंगे।"

(vii) नैनो डीएपी के संबंध में अनुसंधान परीक्षण

- 2.28 नैनो डीएपी के विकास और इसके चल रहे अनुसंधान परीक्षणों के संबंध में, विभाग ने सूचित किया है कि इफको ने पायलट पैमाने पर अपनी स्वामित्व प्रौद्योगिकी का उपयोग करके नैनो डीएपी को स्वदेशी रूप से विकसित किया है। खरीफ वर्ष 2021 के दौरान, उन्होंने राष्ट्रीय कृषि अनुसंधान प्रणाली (एनएआरएस) के तहत 20 राज्यों में 34 स्थानों पर 10 फसलों पर नैनो डीएपी अनुसंधान परीक्षण किए हैं। तथापि, इन परीक्षणों के परिणाम मूल्यांकन के लिए भारत सरकार को प्रस्तुत नहीं किए गए हैं।
- 2.29 यह पूछे जाने पर कि क्या नैनो उर्वरकों के क्षेत्र में अनुसंधान और विकास के लिए विभाग के बजटीय शीर्ष में एक अलग निधि आवंटन की परिकल्पना की गई है तािक अधिक लागत प्रभावी/कुशल और विविध नैनो उर्वरकों (अन्य मैक्रो और माइक्रो फसल

पोषक तत्वों को शामिल करने के लिए) विकसित किया जा सके, विभाग ने नकारात्मक उत्तर दिया।

2.30 इस संबंध में, जब उर्वरक विभाग या उसके पीएसयू या इफको जैसी अन्य संस्थाओं द्वारा नैनो डीएपी और अन्य नैनो कॉम्प्लेक्स उर्वरकों को स्वदेशी रूप से विकसित करने के लिए किए गए अनुसंधान एवं विकास प्रयासों और अब तक हुई प्रगित के बारे में पूछा गया, तो विभाग ने यह कहा है कि इफको ने एनबीआरसी में अपनी आर एंड डी सुविधा के माध्यम से, कलोल ने अपनी स्वामित्व वाली प्रौद्योगिकी का उपयोग करके नैनो डीएपी को स्वदेशी रूप से विकसित किया है। आविष्कार प्रारंभिक पायलट पैमाने पर है और प्रक्रिया को बढ़ाने और वाणिज्यिक स्तर पर नैनो डीएपी का निर्माण करने के प्रयास किए जा रहे हैं।

III नैनो उर्वरकों की प्रगतिशील यात्रा

(i) नैनो यूरिया की प्रगतिशील यात्रा

3.1 उर्वरक विभाग ने इफको नैनो यूरिया की प्रगतिशील यात्रा के संबंध में विवरण सारणीबद्ध रूप में निम्नलिखित प्रस्तुत किया है:

क सं	वर्ष	विवरण		
क्र.सं.	qq			
1	2017	नैनो उर्वरकों का अनुसंधान एवं वाणिज्यिक अन्वेषण इफको द्वारा		
		शुरू किया गया।		
2	2018	प्रयोगशाला स्तर पर परीक्षण की शुरुआत		
3	2019	एनबीआरसी, कलोल और अनुसंधान एवं क्षेत्र परीक्षण का		
		उद्घाटन।		
4	2020	एफसीओ, 1985 और इसके वाणिज्यिक उत्पादन में नैनो		
		उर्वरकों को शामिल करने के लिए उठाए गए कदम।		
5	2021	24 फरवरी- नैनो यूरिया (तरल) - एफसीओ के तहत तरल		
		अधिसूचित और वाणिज्यिक उत्पादन के लिए अनुमति दी गई।		
6	मई,	इफको आरजीबी द्वारा नई दिल्ली में अपनी 50वीं एजीएम में नैनो		
	2021	यूरिया (तरल) की शुरूआत की गई।		
7	जून,	कलोल, गांधीनगर संयंत्र से नैनो यूरिया (तरल) का वाणिज्यिक		
	2021	प्रेषण शुरू किया गया।		

8	जुलाई	नैनो यूरिया (तरल) की ऑनलाइन बिक्री जुलाई में शुरू हुई थी।
	और	औपचारिक रूप से वाणिज्यिक उत्पादन 1 अगस्त, 2021 को
	अगस्त	कलोल (गुजरात) में शुरू हुआ।
	2021	

3.2 इफको ने गुजरात में अपनी कलोल इकाई में नैनो यूरिया उर्वरकों की 1,50,000 बोतलों (500 मिलिलीटर आकार) की उत्पादन क्षमता के साथ दुनिया की पहली विनिर्माण सुविधा स्थापित की है और वाणिज्यिक उत्पादन दिनांक 1 अगस्त, 2021 से शुरू हो गया है। दिनांक 27 नवंबर, 2021 तक की स्थितिनुसार कलोल स्थित इफको नैनो उर्वरक संयंत्र में नैनो यूरिया उर्वरक की 1,15,21,789 बोतलों (500 मिलिलीटर आकार) का उत्पादन किया गया है। यह विश्व में पहली बार है कि नैनो यूरिया को किसानों के लिए शुरू किया गया है। यह नैनो-उर्वरकों के कारण 'आत्मनिर्भर भारत' और 'आत्मनिर्भर कृषि' के संदर्भ में आत्मनिर्भरता की दिशा में एक कदम होगा। भारत ने श्रीलंका को 100 टन नैनो उर्वरक भी वितरित किए हैं।

(ii) नैनो यूरिया का उत्पादन बढ़ाने के उपाय

3.3 जब सिमति ने नैनो यूरिया के उत्पादन को बढ़ाने के लिए किए जा रहे उपायों के बारे में पूछताछ की, तब उर्वरक विभाग के सिचव ने निम्नवत् प्रस्तुत किया:

"..... पहला संयंत्र, अर्थात् इफको कलोल, गुजरात पहले ही स्थापित किया जा चुका है। इफको कलोल, गुजरात के वैज्ञानिकों ने नैनो यूरिया का निर्माण किया है। पहले संयंत्र की कुल क्षमता प्रति वर्ष पांच करोड़ बोतलों की है। इफको फूलपुर, आंवला, बेंगलुरु और देवघर में पांच अन्य संयंत्र भी स्थापित कर रहा है। प्रौद्योगिकी हस्तांतरण के साथ, एनएफएल और आरसीएफ भी अपने संयंत्र स्थापित कर रहे हैं। एनएफएल पंजाब के नांगल में अपना संयंत्र स्थापित कर रहा है। आरसीएफ महाराष्ट्र के ट्रॉम्बे में अपना संयंत्र स्थापित कर रहा है। ये सभी आठ संयंत्र नवंबर, 2025 तक चालू हो जाएंगे और हर वर्ष 44 करोड़ बोतलों का उत्पादन किया जाएगा....किसानों और अधिकारियों के मन में संदेह है कि नैनो यूरिया का उपयोग पारंपरिक यूरिया के उपयोग के अतिरिक्त होगा या यह पारंपरिक यूरिया की जगह लेने जा रहा है।वर्ष 2023 तक, दो संयंत्र चालू हो जाएंगे और कुल उत्पादन हर वर्ष ग्यारह करोड़ बोतलों का होगा। संभावित

प्रतिस्थापन 50 लाख मीट्रिक टन पारंपरिक यूरिया होगा और मूल्य लगभग 20,000 करोड़ रुपये होगा।

वर्ष 2023-24 तक, पांच संयंत्र 28 करोड़ बोतलों के उत्पादन के साथ चालू हो जाएंगे, और अपेक्षित प्रतिस्थापन 127 लाख मीट्रिक टन पारंपरिक यूरिया होगा।

वर्ष 2025-26 तक, सभी आठ संयंत्र चालू हो जाएंगे और कुल उत्पादन हर वर्ष 44 करोड़ बोतल होगा और वे 200 लाख मीट्रिक टन को बदलने जा रहे हैं।

अब, मैं नैनो डीएपी, नैनो जिंक और नैनो कॉपर के बारे में बताता हूं। इफको के वैज्ञानिकों द्वारा अपने कलोल अनुसंधान केंद्र में विकसित प्रौद्योगिकी के आधार पर, डीएपी संस्करण और अन्य उर्वरक संस्करण भी नैनो रूपों में विकसित किए जा रहे हैं। इफको ने नैनो डीएपी विकसित किया है, जिसका क्षेत्र परीक्षण चल रहा है। उन्होंने बीस राज्यों में चौंतीस स्थानों पर दस से अधिक फसलों पर अनुसंधान परीक्षण किए हैं और उन्होंने परिणाम को आगे के सत्यापन और अनुमोदन के लिए कृषि विभाग को प्रस्तुत किया है। मुद्दों पर चर्चा करने और इस संबंध में आवश्यक कार्रवाई करने के लिए आज एक बैठक होने जा रही है।

नैनो जिंक और नैनो कॉपर भी विकसित किए गए हैं और क्षेत्र परीक्षण चल रहे हैं। नैनो यूरिया का उत्पादन अन्य सरकारी कंपनियों को प्रौद्योगिकी के हस्तांतरण के माध्यम से बढ़ाया जाता है। एनएफएल और आरसीएफ ने पहले ही संयंत्रों का निर्माण शुरू कर दिया है और डेढ़ वर्ष के भीतर, वे इसका उत्पादन शुरू कर देंगे।"

3.4 सिमिति ने उर्वरक विभाग का ध्यान भारत के उर्वरक आयात की ओर दिलाया जो महामारी से संबंधित व्यवधानों के कारण बढ़ रहा था। वर्ष 2016-17 के दौरान, यूरिया का आयात 54.81 लाख मीट्रिक टन था और यह वर्ष 2020-21 के दौरान 98.28 लाख मीट्रिक टन तक पहुंच गया है। इसलिए उर्वरकों के आयात पर हमारे देश की निर्भरता को ध्यान में रखते हुए, सिमिति ने देश में नैनो उर्वरकों की उत्पादन क्षमता बढ़ाने के लिए विभाग द्वारा उठाए गए कदमों के बारे में पूछताछ की क्योंकि इसे कम ऊर्जा गहन बताया गया है और इसे सौर ऊर्जा जैसे अनवीकरणीय संसाधनों के साथ संचालित किया जा सकता है, तािक सार्वजनिक और निजी क्षेत्र की कंपनियों दोनों को शािमल करके विभिन्न उर्वरकों

के उत्पादन में आत्मिनर्भरता प्राप्त करने के लिए एक स्थायी मॉडल का निर्माण किया जा सके। उर्वरक विभाग ने अपने उत्तर में कहा है कि नैनो यूरिया के स्वदेशी उत्पादन को बढ़ावा देने के लिए दो केन्द्रीय सार्वजिनक क्षेत्र के उपक्रमों (सीपीएसयू) नामत: नेशनल फर्टिलाइजर्स लिमिटेड (एनएफएल) और राष्ट्रीय केमिकल्स एंड फर्टिलाइजर्स लिमिटेड (आरसीएफ) ने अपने प्रशासिनक नियंत्रण के तहत इफको से नैनो यूरिया की प्रौद्योगिकी के हस्तांतरण के लिए भारतीय किसान उर्वरक सहकारी (इफको) के साथ गैर-प्रकटीकरण करार (एनडीए) और समझौता ज्ञापन (एमओयू) पर हस्ताक्षर किए हैं। नैनो यूरिया संयंत्रों की उत्पादन क्षमता और वाणिज्यिक उत्पादन के प्रत्याशित समय के संबंध में ब्योरा निम्नलिखित है: –

स्थान	उत्पादन क्षमता	वाणिज्यिक उत्पादन/प्रत्याशित	
	बोतलें (500 मिली.)	वाणिज्यिक उत्पादन	
	प्रति वर्ष (करोड़ में)		
इफको कलोल	5.0	अगस्त 2021	
गुजरात			
इफको फूलपुर उ.प्र.	6.0	सितंबर 2022	
इफको आंवला उ.प्र.	6.0	अप्रैल 2023	
इफको बेंगलुरु,	6.0	मार्च 2024	
कर्नाटक			
आरसीएफ ट्रॉम्बे	5.0	मार्च 2024	
महाराष्ट्र			
एनएफएल नंगल	5.0	जुलाई 2024	
पंजाब			
इफको देवघर	6.0	नवंबर 2024	
झारखंड			
इफको असम	5.0	नवंबर 2025	
2025 तक क्षमता	44.0 करोड़ बोतलें प्रति वर्ष		

3.5 आने वाले दिनों में नैनो यूरिया के अनुमानित अधिक उपयोग को ध्यान में रखते हुए समिति ने इस पर जोर दिया कि नैनो उर्वरकों के निर्माण के इच्छुक अधिकाधिक सरकारी और गैर-सरकारी क्षेत्र की कंपनियों को बढ़ावा दिया जाना चाहिए। इस पर इफको के एक प्रतिनिधि ने निम्नवत् कहा:

"निश्चय ही हमारे पास ऐसा भी प्रावधान है। हमारे बोर्ड ने इसे पारित कर दिया है। कुछ दिशानिर्देश और प्रक्रियाएं हैं जिनका निजी लोगों को अनुसरण करना चाहिए। उसके पश्चात ही हम किसी निर्माण इकाई को लगाने के लिए प्रौद्योगिकी प्रदान कर सकते हैं। किंतु यह प्रौद्योगिकी स्वामित्व वाली प्रौद्योगिकी होती है। जो कोई हमारी निर्धारित प्रक्रियाओं को पूरा नहीं करता, हम उसे यह प्रौद्योगिकी नहीं दे सकते हैं। जो कोई भी हमारी निर्धारित सभी प्रक्रियाओं का पालन करेंगे हम उन्हें यह प्रौद्योगिकी प्रदान करेंगे। अब यह खुला है। हमारे बोर्ड ने इस निर्णय को पारित कर दिया है।"

3.6 सिमिति द्वारा आगे यह पूछे जाने पर कि क्या इफको लाभ-साझाकरण के आधार पर निजी कंपनियों और उद्योगों के साथ नैनो उर्वरक प्रौद्योगिकी साझा करेगा, इफको के प्रतिनिधि ने यह उत्तर दिया:

"आरसीएफ और एनएफएल भी कर रहे हैं। हम प्रौद्योगिकी देने के लिए तैयार हैं। लेकिन निश्चित रूप से, हम कुछ रॉयल्टी लेंगे।"

- 3.7 इस संदर्भ में, उर्वरक विभाग ने कहा है कि कृषक समुदाय में नैनो यूरिया की बढ़ती स्वीकृति के साथ, अधिक कंपनियां नैनो यूरिया के उत्पादन, वितरण और विपणन के क्षेत्र में प्रवेश करेंगी, जिससे नैनो उर्वरक उत्पादन क्षमताओं में और वृद्धि होगी। इससे स्थानीय समुदायों के लिए रोजगार के अवसर भी पैदा होंगे और सरकार के 'आत्मनिर्भर भारत' अभियान का समर्थन होगा। विभाग ने इफको से यह भी अनुरोध किया है कि वह नैनो उर्वरक की प्रौद्योगिकी को अन्य सीपीएसयू अर्थात् बीवीएफसीएल और एफएसीटी को बिना किसी लागत के हस्तांतरित करे। तथापि, यह मामला इफको के प्रबंधन के समक्ष विचाराधीन है।
- 3.8 इस विशिष्ट प्रश्न पर कि क्या 2023 तक पूरी हो जाने वाली ब्राउन फील्ड यूरिया विनिर्माण इकाइयां और पुरानी प्रौद्योगिकी पर उर्वरकों का उत्पादन करने वाली मौजूदा इकाइयां उसी प्रौद्योगिकी से चलती रहेंगी अथवा उन्हें नई प्रौद्योगिकी से बदल दिया जाएगा, डेयर के प्रतिनिधि ने बताया कि नई नैनो उर्वरक प्रौद्योगिकी पूरी तरह से यूरिया के उपयोग का स्थान नहीं ले पाएगी। दरअसल 50 प्रतिशत बेसल डोज एप्लीकेशन किया जाता है। शेष 50% में, 25 से 50% अथवा 75% यूरिया से बदला जाएगा। अतः,

यूरिया का निर्माण करने वाले संयंत्र नैनो यूरिया का भी निर्माण करेंगे। इसलिए 100 प्रतिशत यूरिया को बदला नहीं जाएगा।

(तीन) आयात में कमी और बल्क यूरिया की राजसहायता बचत में नैनो यूरिया के लाभ

3.9 सिमिति को सूचित किया गया है कि प्रायोगिक परीक्षणों के माध्यम से इस बात को उचित ठहराया गया है कि नैनो यूरिया के उपयोग से यूरिया के उपयोग में 25-50 प्रतिशत की कमी संभव है। परंपरागत रूप से, देश में प्रति वर्ष खपत यूरिया के 330 लाख मीट्रिक टन खपत के वर्तमान औसत आंकड़े के अनुसार यूरिया की मांग में 10% की कमी को अल्पाविध में लिक्षित किया जा सकता है, इसके बाद मध्यम अविध में 25% और दीर्घाविध में 50% की कमी का लक्ष्य रखा जा सकता है, यह निम्नवत् है:

चरण	नैनो यूरिया (तरल) के माध्यम से यूरिया की मांग में प्रस्तावित कमी
पहला चरण (2022-24)	33 लाख मीट्रिक टन
दूसरा चरण (2024-26)	83 लाख मीट्रिक टन
तीसरा चरण (2026-27)	165 लाख मीट्रिक टन

3.10 जब अगले 5 वर्षों में नैनो उर्वरकों की बिक्री और उपयोग के कारण उर्वरक राजसहायता शीर्ष के तहत होने वाली प्रत्याशित बजटीय बचत के बारे में पूछा गया, यह बताया गया कि इफको ने नैनो यूरिया की 01 उत्पादन सुविधा शुरू की है और नैनो यूरिया के 03 (तीन) और संयंत्र स्थापित कर रहा है, जिसकी कुल उत्पादन क्षमता प्रति वर्ष नैनो यूरिया की 25 करोड़ बोतल है जो 112.5 लाख मीट्रिक टन यूरिया का स्थान लेगा। नैनो यूरिया के उत्पादन के परिणामस्वरूप भारत सरकार लगभग 20,000 रुपये प्रति मीट्रिक टन यूरिया की राजसहायता को ध्यान में रखते हुए प्रति वर्ष राजसहायता बिल में लगभग 3 बिलियन अमरीकी डॉलर की बचत कर सकती है। इफको लगभग 66 लाख टन डीएपी के बराबर नैनो डीएपी के 02 संयंत्र भी स्थापित करेगा, जिसके परिणामस्वरूप डीएपी की 33,000 रुपये प्रति मीट्रिक टन की मौजूदा राजसहायता पर प्रति वर्ष लगभग 21,800 करोड़ रुपये की राजसहायता की बचत होगी।

3.11 उर्वरकों के आयात में कमी लाने और बल्क यूरिया की राजसहायता बचत में नैनो यूरिया के संभावित लाभ के संबंध में सूचना संकलित करके समिति को निम्नानुसार प्रस्तुत की गई है:

इन वर्षों (2021-22) से 2030-31) में बल्क यूरिया के आयातों और सब्सिडी बचत में कमी के संदर्भ में नैनो यूरिया के भावी लाभ

	_															
क्र .	विवरण/व	2016-	2017-	2018-	2019-	2020-	2021-	2022-	2023-	2024-	2025-	2026-	2027-	2028-	20	203
स	र्ष	17	18	19	20	21	22	23	24	25	26	27	28	29	29	0-
															-	31
															30	
क	यूरिया की	29.6	29.9	32	33.7	35	36.2	37.4	38.7	40.0	41.4	42.8	44.3	45.8	47	48.
	अखिल														. 3	9
	भारतीय															
	बिक्री															
	(मिलियन															
	मिट्रिक															
	टन)															
	सीएजीआ		3.41													
	र की															
	बिक्री (गत															
	पांच वर्ष)				1											
ख	यूरिया	24.20	24.02	23.90	24.46	24.60	24.7	24.8	24.8	24.9	25.0	25.1	25.2	25.3	25	25.
	उत्पादन														. 3	4
	(एमएमटी															
	उत्पादन			0.	.33	I										
	सीएजीआ															
	र (गत															
	पांच वर्ष)															
क-	यूरिया	4.971	6.011	7.555	9.124	9.828	11.5	12.7	13.9	15.1	16.4	17.7	19.1	20.5	22	23.
ख	आयात														. 0	5
	(एमएमटी															
)															
	इफको/अ				संयंत्र	संख्या	1	2	5	6	0	0	0	0	0	0
	न्य नैनो					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
	यूरिया															
	संयंत्र															
	इफको				बोतल	मिलिय	21	80	240	340						
	नैनो यूरिया					न										
	(मिलियन															
	बोतल-															
	500															
	एमएल)															
-					यूरिया	एमएम	0.95	3.60	10.80	15.30						
	समतुल्य				પૂારવા		0.93	3.00	10.00	13.30						
	यूरिया					ਟੀ										
	(एमएमटी															
)															
सब्सि	डी करोड़ रूप	ए/चालू		4.618	सब्सि	करोड़	4364	16626	49879	70662	0	0	0	0	0	0
दर प	र मिलियन एम	टी यूरिया			डी											

Iv नैनो यूरिया का उपयोग

(i) नैनो उर्वरकों का सर्वोत्तम उपयोग

- 4.1 सिमिति को बताया गया कि नैनो यूरिया, नैनो जिंक और नैनो कॉपर की अधिकतम प्रभावकारिता प्राप्त करने के लिए फसल के पत्तों पर अधिकतम जुताई/शाखाओं के निकलने पर और फूल आने से पहले सुबह (9-11 बजे) और शाम (3-6 बजे) के घंटों के दौरान पर्ण उपयोग है। नैनो डीएपी को बीज उपचार, पौध को डुबाकर और पर्ण पर उपयोग के रूप में प्रयोग किया जा सकता है।
- 4.2 नैनो यूरिया के स्प्रे के उपयोग के लिए सही समय के संबंध में, उर्वरक विभाग ने बताया है कि नैनो यूरिया के 2 छिड़काव के उपयोग की सिफारिश तब की जाती है जब खेत में पर्याप्त क्रॉप कैनोपी होती है और फसल नाइट्रोजन के उपयोग के महत्वपूर्ण विकास चरण में होती है जैसे कि सिक्रिय जुताई/शाखाएं निकलने के चरण में पहला छिड़काव (अंकुरण के 30-35 दिन बाद/रोपाई के 20-25 दिन बाद) और दूसरा छिड़काव पहले छिड़काव के 20-25 दिन बाद या फसल पर फूलों के आने के चरण से पहले।

(ii) नैनो यूरिया के छिड़काव की पद्धति

- 4.3 नैनो यूरिया के उपयोग के लिए अपनाई गई पद्धित के बारे में पूछने पर यह बताया गया कि तरल नैनो यूरिया का छिड़काव किसानों द्वारा 15 या 16 लीटर पानी की टंकी क्षमता के सामान्य रूप से हाथ से संचालित या बैटरी संचालित नैपसेक स्प्रेयर के साथ किया जाता है। आजकल, किसानों ने 200 लीटर या उससे अधिक क्षमता के बिजली या मिस्ट स्प्रेयर/बूम स्प्रेयर का उपयोग करना शुरू कर दिया है। इसके अतिरिक्त, नैनो उर्वरकों का छिड़काव करने के लिए ड्रोन का उपयोग किया जा सकता है।
- 4.4 नैनो उर्वरक स्प्रेयर की लागत के बारे में और यह पूछे जाने पर कि लागत प्रभावी कैसे है, विभाग ने बताया कि मैनुअल स्प्रेयर की लागत 1200 से 1500 रुपये प्रति स्प्रेयर के बीच होती है; बैटरी चालित स्प्रेयर 3000 से 4500 रुपये प्रति स्प्रेयर और पावर स्प्रेयर 6000 से 10,000 रुपये प्रति स्प्रेयर के बीच होती है। इसके अतिरिक्त, प्रति एकड़ नैनो उर्वरक के छिड़काव की लागत केवल 200-250 रुपये तक होगी।

- 4.5 बाजार में नैनो फर्टिलाइजर स्प्रेयर की उपलब्धता के संबंध में विभाग ने बताया है कि ये स्प्रेयर बाजार में आसानी से उपलब्ध हैं। विभिन्न कृषि रसायन आपूर्तिकर्ता और विनिर्माता किसानों को उनकी आपूर्ति करते हैं ताकि उनके ग्राहक बढ़ें। डीलर/खुदरा विक्रेताओं के साथ-साथ सहकारी समितियां/किसान उत्पादक संगठन (एफपीओ) अपने ग्राहकों को कृषि रसायनों/उर्वरकों के छिड़काव के लिए नाममात्र लागत पर छिड़काव सेवाएं प्रदान करते हैं जिनका उपयोग नैनो यूरिया के छिड़काव के लिए भी किया जा सकता है। इफको भी ब्लॉक स्तर पर कृषि ड्रोन छिड़काव मॉडल ला रहा है और किसानों को कस्टम किराए के आधार पर ये सेवाएं प्रदान करने के लिए ग्रामीण क्षेत्रों में युवाओं को रोजगार पैदा करने के लिए ग्रामीण युवाओं को प्रशिक्षित भी कर रहा है। सहकारी समितियां/एफपीओ/डीलर भी कस्टम किराया आधार पर छिड़काव सेवाएं प्रदान करते हैं। इसके अतिरिक्त, इफको पारस्परिक रूप से स्वीकार्य आधार पर अपने खुदरा विक्रय केंद्रों के माध्यम से किसानों को 1.0 लाख स्प्रेयर छिड़काव सेवाओं की सुविधा प्रदान कर रहा है। यह संभावना है कि नैनो उर्वरकों का छिड़काव करने के इच्छुक किसानों के लिए ड्रोन मशीन पारस्परिक आधार पर उपलब्ध कराई जाएगी। कृषि में नैनो उर्वरकों के छिड़काव के लिए ड्रोन के उपयोग के लिए एसओपी बनाने पर भी विचार किया जा रहा है।
- 4.6 नैनो उर्वरकों के उपयोग के लिए वितरण प्रणाली की उपलब्धता के प्रश्न पर, विभाग के एक प्रतिनिधि ने निम्नानुसार बताया:

"मैं एक और बात बताना चाहता हूं कि ड्रोन नैनो यूरिया का उपयोग करने का एक तरीका है। अन्य नेपसेक स्प्रेयर और अन्य स्प्रे डिब्बे का भी उपयोग किया जा सकता है क्योंकि हम इसे शुरुआती चरणों में उपयोग करते हैं। मैं जो भी कह रहा हूं, हमारे वैज्ञानिक उसका समर्थन करेंगे। इसलिए, मुझे लगता है कि स्प्रेयर का भी उपयोग किया जा सकता है, लेकिन ड्रोन इसे सुविधाजनक बनाएंगे। इसलिए, यह प्रमुख कारक है, लेकिन छिड़काव के लिए एकमात्र तरीका नहीं है।"

4.7 पावर प्वाइंट प्रेजेंटेशन के दौरान, विभाग के एक प्रतिनिधि ने नैनो उर्वरकों के लक्षित उपयोग के महत्व के बारे में निम्नवत् बताया:

"वास्तव में, नैनो उर्वरकों का सटीक और लक्षित उपयोग मिट्टी, हवा और पानी की निरंतरता, पर्यावरणीय निरंतरता और किसानों के लाभ के लिए वरदान है। नैनो यूरिया की उपयोग दक्षता अधिक है और इसके उपयोग से आसान परिवहन और टॉप ड्रेसिंग का प्रतिस्थापन संभव है। इसलिए, वास्तव में, ध्यान देने योग्य बात यह है कि पोषक तत्वों का सटीक और लक्षित अनुप्रयोग हमारे पर्यावरण को बचा सकता है और उत्पादकता में वृद्धि कर सकता है।"

4.8 सिमित ने जून, 2022 में गुजरात के अपने अध्ययन दौरे के दौरान किसानों के साथ बातचीत की, जिसमें उन्होंने बताया कि नैनो-उर्वरकों के छिड़काव के लिए सिंचाई स्प्रिंकलर का उपयोग बहुत प्रभावी था। जब खेतों में नैनो उर्वरकों के छिड़काव के लिए सिंचाई स्प्रिंकलर/ड्रिप-सिंचाई के उपयोग की व्यवहार्यता के बारे में और नैनो उर्वरकों (इफको द्वारा विकसित) की वितरण प्रणाली को फर्टिगेशन प्रौद्योगिकी के साथ जोड़ने और किसानों के बीच बड़े पैमाने पर इसके उपयोग को बढ़ावा देने के लिए उठाए गए कदमों, यदि कोई हो, ताकि नैनो उर्वरकों के उपयोग को किफायती और सुविधाजनक बनाया जा सके, के बारे में पूछा गया तो विभाग ने अपने उत्तर में बताया कि ड्रिप सिंचाई के माध्यम से नैनो उर्वरकों का छिड़काव संभव नहीं है क्योंकि ड्रिप सिंचाई (फर्टिगेशन) के माध्यम से उर्वरक मिट्टी पर उपयोग किए जाते हैं। इस संदर्भ में इफको के एक प्रतिनिधि ने स्पष्ट किया कि नैनो उर्वरकों का छिड़काव सिप्रंकलर के उपयोग से किया जा सकता है, लेकिन ड्रिप सिंचाई के माध्यम से नहीं।

(iii) नैनो उर्वरक छिड़काव के लिए ड्रोन की उपलब्धता

- 4.9 नैनो उर्वरकों के छिड़काव में उपयोग के लिए भारत में ड्रोन उद्योग के विकास के संबंध में, नागर विमानन मंत्रालय के प्रतिनिधि ने साक्ष्य के दौरान बताया कि चूंकि नैनो उर्वरकों का हाथों से छिड़काव किसानों के हाथों, त्वचा और आंखों के लिए हानिकारक है इसलिए ड्रोन के उपयोग से नैनो-उर्वरकों के हाथों से छिड़काव की पद्धित को समाप्त कर दिया जाएगा क्योंकि ड्रोन एक रोबोट की तरह काम करता है जिसे किसान नियंत्रित करता है।
- 4.10 जब देश में ड्रोन विनिर्माताओं की संख्या के बारे में पूछा गया, तो नागर विमानन मंत्रालय (एमओसीए) के प्रतिनिधि ने निम्नानुसार बताया:

"...आज की स्थितिनुसार, लगभग 120 विनिर्माता हैं और लगभग 180-200 सेवा प्रदाता हैं, लेकिन सेवा प्रदाताओं की संख्या किसी दिन सैकड़ों और हजारों में हो जाएगी। अभी, हमारे पास 120 विनिर्माता हैं

जिसमें से हमारी पीएलआई योजना के तहत हमारी की गई चयन प्रक्रिया में 23 निर्माताओं को पीएलआई के लिए योग्य पाया गया है क्योंकि पीएलआई को 2 करोड़ रुपये के कारोबार की आवश्यकता थी। 23 में से, लगभग 11 ड्रोन निर्माता हैं और शेष घटक निर्माता हैं।"

4.11 यह बताते हुए कि नैनो उर्वरकों की प्रभावकारिता इसके उचित उपयोग पर बहुत निर्भर करती है जो ड्रोन की उपलब्धता पर भी निर्भर करेगी जो वर्तमान में देश में बहुत कम हैं, सिमिति यह जानना चाहती थी कि सरकार द्वारा ड्रोन के उत्पादन को बढ़ाने के लिए क्या कदम उठाए जा रहे हैं, विशेष रूप से इस तथ्य को ध्यान में रखते हुए कि सरकार द्वारा इसके आयात पर प्रतिबंध लगा दिया गया है। इस पर एमओसीए के प्रतिनिधि ने निम्नानुसार बताया:

".....वे क्या चाहते हैं? वे अच्छी नीतियां चाहते थे; हमने यह किया है। वे प्रोत्साहन चाहते थे, हमने यह किया है। वे सस्ते चीनी ड्रोन से सुरक्षा चाहते थे, हमने ऐसा किया है। इसलिए, अब उद्योग को कदम उठाना होगा और यह करना होगा। यहां तक कि उद्योग की प्रतिक्रिया के आधार पर टाइप सर्टिफिकेशन पर भी हमने इसे तीन विश्व प्रसिद्ध प्रमाणन निकायों - टाटा कालिटी, अमेरिका की टीक्यूसी और ब्यूरो वेरिटास को आउटसोर्स किया है। पहले लोग कह रहे थे कि सरकार को आठ महीने या छह महीने जैसा बहुत समय लगता है। अब नियमों में दो महीने का समय है। हम इसे दो महीने से अधिक समय तक विलंबित नहीं कर सकते और डीजीसीए बिना कारण बताए 15 दिन से अधिक समय तक इसमें देरी नहीं कर सकता। ये तीनों संस्थाएं भी निजी हैं। इसलिए, अब सरकार की ओर से, हमने स्वयं को आगे बढ़ाया है और जितना संभव हो उतना खाली रखा है जो किसानों और उत्पादकों के लिए अच्छा है। अब, विनिर्माताओं को आगे आना होगा। जैसा कि मैंने बताया, इन 21 ड्रोनों में से, जिनका वर्तमान में इन निजी प्रयोगशालाओं द्वारा परीक्षण किया जा रहा है, उनमें से सात कृषि क्षेत्र से हैं। प्रत्येक माह में , दो या तीन प्रकार के प्रमाण पत्र सामने आएंगे। एक बार एक प्रकार का प्रमाण पत्र दिया जाता है, तो आम बोलचाल के शब्दों में यह मनी प्रिंटिंग मशीन जितना अच्छा है। वे जितने हो सके उतने ड्रोन बना सकते हैं। यहां तक कि पंजीकरण के लिए भी उन्हें हमारे पास आने की जरूरत नहीं है। वे स्वतः ही हमारे डिजिटल प्लेटफॉर्म पर आते हैं। वे सैकड़ों पंजीकरण संख्या

पंजीकृत कर सकते हैं। डी-2 इसका एक मानक रूप है। वे डी-2 फॉर्म भरते हैं और सिस्टम पंजीकरण संख्या बनाता है। वे केवल मुहर लगाते हैं और अगले दिन इसे किसानों को बेच देते हैं। मुझे लगता है कि हम इससे बहुत आगे निकल गए हैं और हम नहीं जानते कि गृह मंत्रालय और हमारे कुछ मंत्रालय हमसे कितना नाराज हैं। वे इस उदारीकरण से बहुत खुश नहीं हैं, लेकिन हमने उतना करने की कोशिश की है जितना हम कर सकते थे। अब, यह उद्योग पर निर्भर करता है क्योंकि हमने मांग उत्पन्न की है, हमने प्रोत्साहन सृजित किया है, हमने नीतिगत अड़चनों, प्रक्रियात्मक अड़चनों, उत्पीड़न को दूर किया है। सब कुछ चला गया है। आयात खत्म हो गया है।

4.12 पूरे देश की मांगों को पूरा करने के लिए आवश्यक ड्रोन की संख्या के संबंध में किए गए आकलन, यदि कोई हो, के बारे में पूछे जाने पर, एमओसीए के प्रतिनिधि ने निम्नानुसार बताया:

"ड्रोन की जरूरत लाखों में है। जैसा कि मैंने बताया, हम तो केवल बच्चे हैं। हम रेंगने के चरण में हैं क्योंकि हमने बहुत देर कर दी थी। महोदय, हम चीन से 20 वर्ष यह सोचकर पीछे रह गए कि यह एक नकारात्मक कदम है। अब, हमने अभी शुरू किया है और सभी चीजों को पूरा कर दिया है। लक्ष्य 6.6 लाख गांवों का है। यदि प्रत्येक गांव में 10 ट्रैक्टर हैं, तो कम से कम, हमारे पास प्रत्येक गांव के लिए 10 ड्रोन होने चाहिए। कल रात तक हमारे पास केवल 3,100 ड्रोन पंजीकृत थे। लक्ष्य 60 लाख का है लेकिन यह तेजी से बढ़ेगा।"

4.13 जब उनसे अपेक्षित बजटीय आवंटन वाली विशिष्ट विभाग/मंत्रालय/किसी अन्य अंतर-विभागीय समग्र योजना, जिसके माध्यम से ड्रोन की खरीद के लिए किसान उत्पादक संगठनों (एफपीओ), कृषि विज्ञान केंद्रों (केवीके) को राजसहायता दी जा रही है के बारे में और यह पूछने पर कि क्या सिंगल विंडो क्लीयरेंस सिस्टम का प्रावधान है; एमओसीए के प्रतिनिधि ने निम्नवत् उत्तर दिया:

"सर, यह काफी अच्छा सवाल है। यह स्कीम एग्रीकल्चर मिनिस्ट्री की एग्जिस्टिंग स्कीम है। इसको हम सबिमशन ऑन एग्रीकल्चर मशीनरी बोलते हैं। वर्ष भर इस पर बहुत चर्चा हुई कि ड्रोन को कैसे सपोर्ट किया जाए। इसमें बेस्ट यही लगा कि जो एग्जिस्टिंग स्कीम है, उसी के अण्डर आप ट्रैक्टर व हार्वेस्टर के कंबाइन्ड के साथ-साथ ड्रोन को भी एलिजिबल कर दीजिए। इसमें वही बेनिफिट्स मिल रहे हैं, जो ट्रैक्टर को मिलता है। यह एक इस्टैब्लिशब्ड स्कीम है।

सर, मैं मान रहा हूँ कि जमीनी स्तर पर अभी रिजल्ट्स अच्छे नहीं हैं और मैं किसी दूसरी मिनिस्ट्री की तरफ से नहीं बोलना चाहता। लेकिन, ऐसा कहा जाता है कि संख्याएं झूठ नहीं बोलतीं। अभी किसी तरह से सामंजस्य नहीं बैठ पा रहा है। यह एग्रीकल्चर मिनिस्ट्री का बजट है। उन्होंने डेढ़-दो हजार करोड़ रुपये या जितना भी रखा है, वह दिया जाएगा। वे सारे एकिपमेंट्स के लिए हैं। केवीकेएस और एग्रीकल्चर स्टेट सब्जेक्ट है और उसके लिए जो मनी आवंटित होती है, वह भी स्टेट के माध्यम से ही होता है। प्रत्येक राज्य को अपने तरीके बनाने होंगे ताकि धन अंतिम व्यक्ति तक पहुंच सके. सेंट्रल की तरफ से पॉलिसी बन गई, इंसेंटिव स्कीम्स आ चुकीं और मनी रेडी है, लेकिन उसका कनेक्शन नहीं हो पा रहा है।"

4.14 सिमिति के साथ बातचीत के दौरान, एक किसान ने कहा कि नैनो उर्वरकों के छिड़काव में शारीरिक श्रम और श्रम लागत में कमी के अलावा, ड्रोन के उपयोग से बहुत कम समय में काम पूरा भी हो सकेगा। आजकल श्रमिक आसानी से उपलब्ध नहीं है। उसने यह भी बताया कि चूंकि किसान व्यक्तिगत रूप से ड्रोन नहीं खरीद सकते हैं, इसलिए उन्हें एफपीओ के रूप में सहकारी सिमितियां बनाने की आवश्यकता है जो क्षेत्र के किसानों के उपयोग के लिए ड्रोन खरीद सकते हैं जो कि अधिक किफायती होगा। एक अन्य किसान ने कहा कि नैनो उर्वरकों के छिड़काव से उपज की मात्रा में सुधार होता है और किसानों की आय में 15 से 20 प्रतिशत की वृद्धि होती है। उसने नैनो उर्वरकों के छिड़काव की सुविधा के लिए किसानों को और अधिक स्प्रेयर उपलब्ध कराने और छोटे और सीमांत किसानों को राजसहायता वाले ऋण की सुविधा प्रदान करने की आवश्यकता पर जोर दिया तािक वे ड्रोन और स्प्रेयर खरीद सकें।

4.15 साक्ष्य के दौरान, नागर विमानन मंत्रालय के एक प्रतिनिधि ने कृषि ड्रोन की लागत के बारे में विस्तार से बताया:

"सर, फार्मर्स ड्रोन करीब 8 से 10 लाख रुपये के बीच में आता है। यह 25 किलो का ड्रोन है और काफी भारी होता है। नार्मल ड्रोन 50 हजार रुपये से लेकर काफी महंगे होते हैं। सर्वे वाले ड्रोन तीन से पांच लाख रुपये के होते हैं। एग्रीकल्चर ड्रोन 25 किलो का होता है और 10 किलो का टैंक होता है। उसमें टेरेन का राडार भी होता है, ताकि अगर ऊबड़-खाबड़ है और बीच में पेड़ आ गया तो उसे रोक सके तथा उससे टूट कर वह गिर न जाये। यह करीब 10 लाख रुपये का आता है।"

4.16 सिमिति ने जून, 2022 में कलोल, गुजरात की अपनी अध्ययन यात्रा के दौरान किसानों के साथ अनौपचारिक चर्चा की, जिसमें किसानों ने अन्य बातों के साथ-साथ नैनो उर्वरकों के पर्ण पर उपयोग के लाभों के बारे में उल्लेख किया। हालांकि उन्होंने कहा कि मैनुअल तरीकों से नैनो उर्वरकों का छिड़काव में समय लगता है और यह श्रम लागत के मामले में बहुत महंगा है। किसानों ने ड्रोन द्वारा उपयोग/स्प्रे की उच्च लागत के कारण नैनो-उर्वरकों का उपयोग करने में अपनी असमर्थता व्यक्त की और इच्छा व्यक्त की कि सरकार द्वारा अभिनव उत्पाद का उपयोग करने में सुविधा के लिए कुछ राहत दी जानी चाहिए। इस संबंध में विभाग ने कहा है कि नैनो यूरिया के प्रभावी छिड़काव के लिए सहकारी सिमितियों, खुदरा विक्रेताओं की मदद से सामूहिक और सामुदायिक छिड़काव के साथ-साथ ग्रामीण स्तर के युवाओं/एफपीओ द्वारा स्प्रेयर किराए पर लेने का पता लगाया जा रहा है।

4.17 देश में 86 प्रतिशत से अधिक छोटे और सीमांत किसानों द्वारा लगभग 10 लाख की लागत वाले कृषि ड्रोन को वहन करने में असमर्थता पर सिमति द्वारा व्यक्त की गई चिंता पर, एमओसीए के एक प्रतिनिधि ने टिप्पणी की:

"सर, हमारी कोशिश है कि मैन्यूफैक्चर की तरफ से उसे पीएलआई स्कीम के थ्रू पैसे देकर और अभी सोचिए कि पूरी इंडिया में मैन्यूफैक्चरिंग सिर्फ 60 करोड़ रुपये की थी, उस पर सरकार 120 करोड़ रुपये दे रही है। अगर हम पूरे ड्रोन उद्योग के बारे में बात करते हैं जो भारत में 60 करोड़ रुपये में निर्माण कर रहा है, तो भारत सरकार उन्हें तीन वर्षों में 120 करोड़ रुपये दे रही है। कम्पीटिशन से और इस पैसे से वह सस्ता होगा।"

4.18 देश भर में किसानों को सस्ती दरों पर ड्रोन उपलब्ध कराने, रियायती दरों पर ड्रोन खरीदने के लिए किसान सहकारी समितियों के गठन और इसके उचित उपयोग के लिए स्थानीय उद्यमियों और किसानों को ड्रोन पायलट प्रशिक्षण प्रदान करने के लिए सरकार की

विशिष्ट योजनाओं, यदि कोई हो, के बारे में पूछे जाने पर, उर्वरक विभाग ने सूचित किया है कि उन्होंने तरल उर्वरकों के ड्रोन छिड़काव के लिए उद्यमियों के विकास के लिए दिशा-निर्देश जारी किए हैं। विभाग उक्त दिशानिर्देशों को बढ़ावा देने के लिए उन हितधारकों, जो सस्ती लागत पर उर्वरकों के लिए ड्रोन की उपलब्धता सुनिश्चित करेंगे, के साथ नियमित संपर्क में है।

- 4.19 पर्याप्त संख्या में बैटरी चालित स्प्रेयर का प्रावधान करने के संबंध में एक विशिष्ट प्रश्न के उत्तर में, विभाग ने बताया है कि उसने किसानों को एक लाख बैटरी संचालित स्प्रेयर प्रदान किए हैं।
- 4.20 नैनो उर्वरक के छिड़काव के लिए उपकरण/स्प्रेयर खरीदने में सक्षम बनाने के लिए किसानों को प्रस्तावित प्रोत्साहनों के बारे में पूछे जाने पर, विभाग ने कहा है कि कृषि में नैनो उर्वरक के छिड़काव के लिए ड्रोन के उपयोग के लिए एसओपी उनके विचाराधीन है, जिसमें उन उद्यमियों, जो ड्रोन की सुविधा का लाभ उठाना चाहते हैं, के लिए कृषि अवसंरचना निधि (एआईएफ) के माध्यम से ड्रोन मूल्य का 90% प्रदान किया जाएगा।
- 4.21 किफायती दरों पर ड्रोन उपलब्ध कराने के लिए किए जा रहे प्रयासों के बारे में पूछे जाने पर, एमओसीए के प्रतिनिधि ने निम्नानुसार बताया:

"सर, मैं उस पर आ रहा हूं। दूसरी साइड जो ऐन्ड यूजर्स हैं, उसमें एग्रीकल्चर इंफ्रास्ट्रक्चर फंड है, जिसके तहत 90 प्रतिशत मतलब 10 लाख रुपये में से 9 लाख रुपये आपको एग्रीकल्चर इंफ्रा फंड से मिलेंगे। अभी एक हफ्ते पहले बैंक ऑफ इंडिया ने शायद पहला अप्रूव किया है। दूसरा, कृषि मंत्रालय की तरफ से एक राजसहायता स्कीम है, वह केवीके की स्कीम है, जो 100 प्रतिशत, 75 प्रतिशत और 50 प्रतिशत की है। जैसे किसान विकास केन्द्र हैं और अगर यूनिवर्सिटी खरीदेगी तो उनको 100 परसेंट मतलब ज़ीरो कॉस्ट पड़ेगी। उसके बाद एफपीओ को 75 प्रतिशत राजसहायता है और उसके बाद कस्टमर हायर सेंटर्स को 50 प्रतिशत है। एससी, एसटी फार्मर्स और वूमेन फार्मर्स को 50 परसेंट राजसहायता है। जो ऐन्ड यूजर्स इंडस्ट्रीज हैं और मैं एग्रीकल्चर मिनिस्ट्री की भी बहुत तारीफ करूंगा कि उन्होंने बहुत फास्ट लाकर एग्रीकल्चर मशीनरी में ड्रोन को इन्क्लूड कर दिया है। इसलिए उनको टाइम वैस्ट नहीं करना पड़ेगा। एग्जिस्टिंग स्कीम के तहत उनको पैसा दे रहे हैं।"

- 4.22 साक्ष्य के दौरान समिति द्वारा यह पाया गया कि तरल उर्वरकों के ड्रोन छिड़काव के लिए उद्यमियों के विकास के लिए उर्वरक विभाग द्वारा जारी दिशा-निर्देशों के अनुसार, किसानों द्वारा ड्रोन के माध्यम से तरल उर्वरकों/कीटनाशकों के छिड़काव की दर बाजार द्वारा तय की जाएगी। इस संबंध में, जब समिति ने सुझाव दिया कि तरल उर्वरकों के छिड़काव की दर को बाजार की ताकतों पर छोड़ने के बजाय, इसे वैधानिक रूप से निर्धारित किया जाना चाहिए ताकि किसानों को आराम से उत्पाद का उपयोग करने के लिए कुछ राहत दी जा सके, विभाग ने कहा है कि उन्होंने तरल उर्वरकों के ड्रोन छिड़काव के लिए उद्यमियों के विकास के लिए दिशानिर्देश जारी किए हैं। विभाग उक्त दिशानिर्देशों को बढ़ावा देने के लिए उन हितधारकों, जो सस्ती लागत पर उर्वरकों के लिए ड्रोन की उपलब्धता सुनिश्चित करेंगे, के साथ नियमित संपर्क में है।
- 4.23 सिमिति ने बताया कि नैनो उर्वरकों के छिड़काव के लिए किसानों द्वारा ड्रोन किराए पर लेने के लिए 500 रुपये की लागत अधिक है और इसे राजसहायता देने की आवश्यकता है। उत्तर में, तिमलनाडु कृषि विश्वविद्यालय (टीएनएयू) के एक प्रतिनिधि ने निम्नानुसार उत्तर दिया:

"ड्रोन के लिए, खेत के एक एकड़ पर छिड़काव पूरा करने में केवल पांच मिनट लगते हैं। यह बहुत प्रभावी है। एक ड्रोन एक दिन में लगभग 80 एकड़ क्षेत्र पर स्प्रे कर सकता है। जैसा कि माननीय सदस्य ने उल्लेख किया है, अधिकांश भारतीय किसान छोटे और सीमांत किसान हैं। यह एक खिलौने की तरह है। हम उस स्थान को निर्धारित कर सकते हैं जहां इसे उड़ान भरने की आवश्यकता है और कितनी ऊंचाई पर उड़ान भरने की आवश्यकता है। सुरक्षा के सभी उपाय किए जा सकते हैं।"

. . . .

महोदय, हम इसे राजसहायता दे सकते हैं।

. . . .

"हमने हाथ से छिड़काव करने के साथ तुलना की है। खेत के एक एकड़ पर छिड़काव पूरा करने में लगभग एक दिन लगता है।"

4.24 समिति ने आगे बताया कि तरल उर्वरकों के ड्रोन छिड़काव के लिए उद्यमियों के विकास पर दिशानिर्देशों के अनुसार, एक ड्रोन की लागत 5 प्रतिशत जीएसटी के साथ

6,28,000 रुपये है, हालांकि, नागर विमानन मंत्रालय के अनुसार ड्रोन की लागत लगभग 10 लाख रुपये है। इसके अलावा, दिशानिर्देशों में कहा गया है कि ड्रोन स्प्रे शुल्क लगभग 200 रुपये प्रति एकड़ है, हालांकि टीएनएयू प्रति एकड़ 500 रुपये का शुल्क ले रहा है। उत्तर में, टीएनएयू के एक प्रतिनिधि ने स्पष्ट किया कि:

"ऐसा इसलिए है क्योंिक हमें स्थान की यात्रा करने की आवश्यकता है। यह सब लागत में शामिल है। यहां जो लागत बताई गई है, वह फार्म गेट प्राइस है। हमें संस्थान से खेत तक ड्रोन ले जाना पड़ता है। लेकिन इस पर राजसहायता दी जा सकती है।"

4.25 ड्रोन के उपयोग को अधिक किफायती बनाने के मुद्दे पर, इफको के एक प्रतिनिधि ने निम्नानुसार बताया:

' ' सर, हम ने इस पर वर्किंग की है। अगर आप हमें अनुमति दें तो इसके बारे में जानकारी दूं। एक वर्ष पहले जब हमने काम शुरू किया था, उस समय थोड़ी दिक्कतें जरूर थीं, लेकिन धीरे-धीरे वीड आउट हुआ। हमने एक एन्टरप्रेन्योर मॉडल बनाया था। उसमें यह था कि हम एक ड्रोन देंगे, ड्रोन के साथ एक इलेक्ट्रिक व्हीकल देंगे, उसमें ड्रोन रखने के लिए पीछे बॉक्स बनाया गया था। उसमें एक हेल्पर भी बैठ जाएगा और ड्रोन चलाने वाला भी उसमें बैठ जाएगा। उसकी बैट्री की कैपेसिटी हैवी कर दी गई थी, ताकि उससे बैट्री भी चार्ज हो जाए। हमने माना था कि अगर एक ड्रोन से एक एन्टरप्रेन्योर 25 एकड़ में काम करेगा, तो वह पांच हजार रुपए रोज कमाएगा। अगर वह पांच हजार रुपए कमाता है, तो उसका सारा खर्चा दो हजार रुपए आता है। इस प्रकार उसे तीन हजार रुपए एक दिन में बचेंगे। हमने यह हिसाब लगाया था कि जहां पर वर्ष में दो क्रॉप्स होती हैं, तो दो सौ दिन की स्प्रिंग मिल जाएगी। हमने इसलिए हिसाब लगाया था कि सोइंग पीरिएड करीब एक-डेढ महीने वैरी करता है, उसी प्रकार स्प्रे टाइम एक-डेढ़ महीने वैरी करेगा। उन्हें दो स्प्रे मिलेंगे, तो हमने अनुमान लगाया था कि उसे स्प्रे के लिए 200 दिन मिलेगा। अर्थात् उसका पर एनम छ: लाख रुपए का पैकेज बन जाएगा। उसके लिए डिपार्टमेंट ऑफ फर्टीलाइजर ने बहत मजबूती से हमें सपोर्ट किया। उन्होंने प्रजेंटेशन बना कर उसकी स्वीकृति भी दी थी। यह एन्टरप्रेन्योर का ऐसा मॉडल था, चूंकि वह यूनिवर्सिटी के माध्यम से हो रहा है, उनके ओवर हेड और खर्च ज्यादा होंगे, जब वह गांव का एन्टरप्रेन्योर करेगा, तो उसे लाने-ले जाने का खर्चा नहीं लगेगा, बैट्री चार्जिंग का खर्चा नहीं लगेगा और हमने उसके लिए एप बनाने के लिए भी कहा था। जिन लोगों को ड्रोन से स्प्रे कराना होगा, उसके बारे में जानकारी एप से भेजेंगे। उसके लिए एक एजेंसी लगा देंगे, उसको 20 रुपए प्रति एकड़ अलग से मिलेगा। वह 20 रुपए प्रति एकड़ में नॉर्मल वीयर एंड टीयर एवं उनकी सारी चीजें देखेगा। यह एक ऐसा मॉडल है, जो हमनें इसमें प्रस्तुत किया है। हम प्रयास करेंगे कि इस मॉडल पर आगे काम करके इसको सफल बनाए।

सर, हमने यह मॉडल बनाया है। अगर अभी इस मॉडल पर काम करेंगे, तो इसमें निश्चित सफलता मिलेगी। हमने इसे 25 एकड़ का माना है, लेकिन अभी सर बता रहे थे कि यह 80 एकड़ का हो सकता है। लेकिन हमने 80 एकड़ नहीं माना। हमने कहा कि अगर हमने 30 एकड़ भी स्केल-अप कर लिया, वैसे मिनिमम 25 एकड़ है, लेकिन अगर 30 एकड़ में भी स्प्रे कर लिया, तो आप मानकर चलें कि इसमें लोगों के आठ लाख रुपए बचेंगे।

इसमें जो दूसरा बेनिफिट दिया गया है, वह यह है कि हमने कहा था कि जो ड्रोन से स्प्रे करेगा, उसको इसका रिटेलर भी बना देंगे। हमें मैडम से इसकी अनुमित मिली थी। जो उत्पाद बेचेगा, जब ऑफ टाइम होगा या जब सीज़न का टाइम होगा, तो दोनों समय उसे अतिरिक्त आमदनी भी हो जाएगी, जैसे वह नैनो यूरिया, सेगरिका या कुछ और ऑर्गेनिक प्रोडक्ट बेचेगा, तो उनसे एडिशनल इनकम होगी और इसके साथ ही, ड्रोन से स्प्रे की इनकम अलग से होगी। इस तरह से, दोनों मिलाकर व्यक्ति लगभग आठ-नौ लाख रुपए बचा सकता है।

माननीय फर्टिलाइजर मिनिस्टर साहब ने उस समय कहा था कि इसको पहले ब्लॉक लेवल पर जाना है। अभी जैसा कि श्री तोमर साहब ने

बताया था, यह ब्लॉक लेवल तक ले जाने की स्कीम है। लेकिन बीच में यह हुआ कि अभी डीजीसीए ने कुछ अप्रूवल शुरू कर दिया है। जैसे ही हमारे दो-तीन ट्रेनिंग कॉलेज आ जाएंगे, तो हम शुरू करेंगे।''

(iv) ड्रोन पायलट प्रशिक्षण की आवश्यकता

4.26 ड्रोन को कस्टम किराए पर लेने और ड्रोन द्वारा स्प्रे के लिए दिए गए प्रशिक्षण और इसके संचालन के बारे में पूछे जाने पर, टीएनएयू के एक कृषि वैज्ञानिक ने निम्नानुसार बताया:

"हमारे पास 40 अनुसंधान केंद्र, 18 कॉलेज और 14 केवीके हैं। सभी इकाइयों में, हमारे पास एक ड्रोन होगा। किसानों को कहीं और से ड्रोन लाने की जरूरत नहीं है। हम कस्टम हायरिंग देंगे। प्रति एकड़, इसकी लागत लगभग 500 रुपये है और यह बहुत प्रभावी है। विशेष रूप से, हमने नैनो यूरिया स्प्रे के लिए ड्रोन का भी उपयोग किया। हमने मक्का के साथ-साथ चावल के लिए 10 एकड़ में प्रयोग किए। हमने मक्का के साथ-साथ चावल में नैनो यूरिया को प्रभावी ढंग से वितरित करने के लिए कई मापदंडों में परिवर्तन किया है। हमारे पास इसके लिए पूरी एसओपी है। यह बहुत प्रभावी है। पर्यावरण को कोई खतरा नहीं है। हमने प्रभावकारिता का अध्ययन किया है। किसानों को वास्तव में लाभ होगा। ड्रोन ऑपरेशन में कार्यबल को बेहतर बनाने के लिए हमारे पास एग्रीकल्चर इंजीनियरिंग का डिप्लोमा कोर्स है जिसमें तमिलनाडु सरकार ने एक खास पहल की है जिसमें ड्रोन की ट्रेनिंग दी जाएगी। यह 10 घंटे का कोर्स है। दो सप्ताह के भीतर वे प्रशिक्षित हो जाएंगे और ड्रोन संचालित करने का लाइसेंस प्राप्त करेंगे।"

4.27 किसानों के लिए ड्रोन के प्रशिक्षण कार्यक्रमों के बारे में पूछे जाने पर, इफको के एक प्रतिनिधि ने उत्तर दिया:

"..... हमने ड्रोन से संबंधित ट्रेनिंग प्रोग्राम्स कराए हैं। हमने ड्रोन के छह प्रशिक्षण कार्यक्रम आयोजित किए हैं। कुछ मुद्दे हैं, जिन्हें सुलझाया जाना है, और उन्हें अति शीघ्र सुलझा लिया जाएगा। इसलिए, हम ड्रोन द्वारा छिड़काव शुरू करेंगे। यहां तक कि हमारे सभी संयंत्रों, विशेष रूप से यूपी में दो स्थानों पर हमने ड्रोन की आपूर्ति की है। हमारी फूलपुर इकाई

और आंवला इकाई के पास, हम ड्रोन द्वारा किसानों के खेतों में छिड़काव कर रहे हैं। मध्य प्रदेश में भी हमने कुछ गतिविधियां शुरू की हैं। गुजरात में भी हमने इसे शुरू किया है। यहां तक कि चेन्नई में भी डॉ. सुब्रमण्यम कुछ ड्रोन पर कार्य कर रहे हैं। एमआईटी चेन्नई हमारी मदद से ड्रोन का प्रशिक्षण भी दे रहा है। इसलिए, हम ड्रोन प्रशिक्षण और ड्रोन के प्रयोग के लिए भी बहुत सतर्क हैं। निश्चित रूप से, उन्होंने इस ड्रोन का एक दिशानिर्देश विकसित किया है कि ड्रोन के लिए उर्वरक की मात्र को कैसे अनुकूलित किया जाए। अत, यह कार्य पहले ही पूरा हो चुका है। हमने उर्वरक विभाग को एक रिपोर्ट प्रस्तुत की है और उन्होंने ड्रोन के दिशा-निर्देश जारी किए हैं जिसमें ग्रामीण उद्यमी प्रति वर्ष 7 लाख रुपये से 10 लाख रुपये तक कमा सकते हैं।

यह प्रायोगिक चरण में है। एक वर्ष के भीतर, आप देखेंगे कि ड्रोन का उपयोग किसानों द्वारा सभी प्रकार के कीटनाशकों, नैनो यूरिया, पानी में घुलनशील उर्वरकों आदि के प्रयोग के लिए किया जाता है। बहुत जल्द, यह आ जाएगा।"

4.28 इस संदर्भ में, टीएनएयू के एक शोध वैज्ञानिक ने निम्नानुसार बताया:

"..... ड्रोन का उपयोग हर्बिसाइड स्प्रे, कीटनाशक स्प्रे के लिए किया जा सकता है। तिमलनाडु राज्य विधानसभा ने 60 ड्रोन खरीदने के लिए हमारे लिए 11 करोड़ रुपये की एक परियोजना को मंजूरी दी है। हमारे पास टीएनएयू में एक ड्रोन प्रयोगशाला है जहां उड़ान की ऊंचाई, स्वाथ, ड्रोन की गित के कई पैरामीटर हैं। अब, विनियम लागू है। निश्चित रूप से, ड्रोन का उपयोग बढ़ रहा है। तिमलनाडु राज्य सरकार ने भी टीएनएयू से अनुरोध किया है कि वह बेरोजगार युवाओं को ड्रोन उपयोग के लिए प्रशिक्षित करे जिसके लिए हम प्रयास कर रहे हैं। कई कंपनियां हैं, जो ड्रोन तकनीक को बढ़ावा देने के लिए समझौता ज्ञापनों पर हस्ताक्षर करने के लिए आगे आई हैं।"

4.29 साक्ष्य के दौरान, विभाग के एक प्रतिनिधि ने अपने कृषि उद्यमी मॉडल दिशानिर्देशों के संबंध में निम्नानुसार विवरण प्रस्तुत किया है: "महोदया, इफको और टीएनएयू ने जो बताया है, उसके अतिरिक्त नैनो यूरिया और अन्य तरल उर्वरकों में ड्रोन के महत्व को देखते हुए उर्वरक विभाग कृषि उद्यमी मॉडल दिशानिर्देश लेकर आया है। उन दिशा-निर्देशों के अनुसार, प्रायोगिक आधार पर हमने जो अध्ययन किया है वह यह है कि प्रत्येक ब्लॉक स्तर पर अग्रणी उर्वरक एजेंसी द्वारा एक उद्यमी का चयन किया जाएगा। हमारे पास बहुत सी कंपनियां हैं। प्रत्येक राज्य के लिए, हमारे पास एक अग्रणी उर्वरक एजेंसी है। वह एजेंसी उस राज्य में ब्लॉकों की देखभाल करेगी और प्रत्येक ब्लॉक में, एक उद्यमी चुना जाएगा। उर्वरक कंपनी के साथ-साथ कृषि विश्वविद्यालयों और ड्रोन फेडरेशन की मदद से, वे उद्यमी के लिए ड्रोन खरीदने की कोशिश करेंगे। इसके लिए लगभग 8 लाख रुपये से 10 लाख रुपये खर्च होंगे।

कृषि विभाग में एक फंड है जो कृषि अवसंरचना निधि है। ड्रोन को कृषि मशीनरी के तहत भी शामिल किया गया है और इसे राजसहायता मिल रही है। अतः, महोदया, दोनों ही मामलों में वे ड्रोन लेने के लिए राजसहायता प्राप्त कर सकते हैं और उन उद्यमियों को उर्वरक एजेंसियों द्वारा कृषि विश्वविद्यालयों के तकनीकी व्यक्तियों अथवा ड्रोन एजेंसियों से प्रशिक्षित किया जा सकता है और इसका उपयोग विशेष क्षेत्र में छिड़काव के लिए किया जा सकता है। हमने मॉडल को अंतिम रूप दे दिया है और हम इसकी प्रगति की निगरानी कर रहे हैं। हमने हाल ही में इसके लिए दिशा-निर्देश जारी किए हैं।"

4.30 सिमिति ने आशंका व्यक्त की कि किसान ड्रोन प्रशिक्षण के लिए दूर-दराज के केंद्रों में नहीं जा पाएंगे, और इसलिए सिमिति ने इच्छा व्यक्त की कि मंत्रालय अधिक संख्या में केंद्र स्थापित करने की व्यवस्था करे। इसके उत्तर में, एमओसीए के एक प्रतिनिधि ने निम्नानुसार बताया:

"सर, हम लोग कोशिश यह कर रहे हैं कि स्माम (SMAM) की स्कीम अभी जनवरी में आई है और पैसा आवंटित होने में भी टाइम लगेगा। स्कीम में पैसा आ गया है, सब कुछ आ गया, लेकिन जमीनी स्तर पर पहुंचने में थोड़ा टाइम लगता है। हम मिनिस्ट्री से बात करते हैं तो वे कहते हैं कि वह स्टेट सब्जेक्ट है। सेंटर ने तो स्कीम बना दी और पैसे भी स्टेट को दे दिये। अब स्टेट को डेवलप करना है कि डिस्ट्रिक्ट लेवल पर कैसे आवंटित किया जाए। क्योंकि आप सेंटर से डायरेक्ट फार्मर्स को नहीं दे सकते, उसमें मैं मान रहा हूं कि वह थोड़ा स्लो चल रहा है। जब केवीके या फार्मर्स प्रोड्यूसर ऑर्गेनाइजेशन को 75 प्रतिशत राजसहायता मिल रही है मतलब उसको 10 लाख रुपये में से 2.5 लाख रुपये देने हैं तो वह उसे लेकर डिमोंस्ट्रेशन कर सकता है। जो ट्रेनिंग है, वह गांव में ही जाएगी। उनको इन 27 स्कूलों में आने की जरूरत नहीं है। आपका बिल्कुल सही सवाल है।''

4.31 जब सिमिति ने अपना विचार व्यक्त किया कि ड्रोन का उपयोग तभी सफल होगा जब प्रशिक्षण सुविधा ब्लॉक स्तर तक पहुंचेगी, तो एमओसीए के एक प्रतिनिधि ने निम्नानुसार उत्तर दिया:

"सर, हमारा प्लान तो 8,000 का है क्योंकि अगर 800 जिले हैं तो कम से कम हर जिले में 10 तो हों, दूर-दराज़ के इलाकों तक पहुंचे। तो 8,000 का प्लान है, अभी तो हमने एक शुरुआत की है स्कूलो में, क्योंकि सर, उसका भी प्रोसेस होता है अप्रवल होता है।"

4.32 किसानों के इस डर को दूर करने के लिए कि ड्रोन रखने या इसका उपयोग करने के लिए बहुत सी मंजूरी और लाइसेंस की आवश्यकता होगी, इस संबंध में उन्हें शिक्षित करने के लिए आयोजित जागरूकता कार्यक्रमों या आउटरीच कार्यक्रमों के बारे में पूछे जाने पर, एमओसीए के प्रतिनिधि ने निम्नवत् प्रतिक्रिया व्यक्त की:

"इसके बहुत सारे डिमॉन्सट्रेशन हो रहे हैं। सोशल मीडिया, लिंक्ड-इन, ट्विटर, सभी पर हम यह कर रहे हैं और वह लोकल भाषा में कर रहे हैं। ट्विटर पर अंग्रेजी में लिखने का कोई मतलब नहीं है। इसलिए, हमने अब तक 12 राज्यों को कवर किया है। हम और राज्यों को कवर करने का प्रयास करेंगे। इसलिए, हर राज्य ऐसा कर रहा है, और जिला स्तर पर बहुत से युवा अधिकारी हैं जो ड्रोन के मानवीय पक्ष के बारे में बहुत आश्वस्त हैं, और वे इस संदेश का प्रचार कर रहे हैं। लेकिन, जैसा कि मैंने कहा, हमने इस कार्य को पिछले वर्ष अगस्त में ही शुरू किया है, इसे अभी एक वर्ष हुआ है। अभी नियम बनाए जा रहे हैं। फीडबैक के आधार पर इस वर्ष फरवरी में ही हम पहला संशोधन लेकर

आए। सात महीने के अंदर हमने पायलट हेतु लाइसेंस व्यवस्था को भी खत्म कर दिया। इससे पहले पायलट लाइसेंस के लिए आपको डीजीसीए जाना पड़ता था। अब, आप देश भर में अधिकृत किसी भी ड्रोन प्रशिक्षण स्कूल में जा सकते हैं। डीजीसीए इन स्कूलों को अधिकृत करता है। आईआईटी मद्रास जब सर्टिफिकेट देता है तो भारत सरकार जाकर उसकी जांच नहीं करती। इसलिए, आप आईआईटी मद्रास को अधिकृत करते हैं, फिर आईआईटी मद्रास प्रमाण पत्र देता है। यहाँ भी इसी अवधारणा का प्रयोग किया गया है। हम केवल 27 स्कूलों की निगरानी करते हैं, वे क्या करते हैं, यह हम उन पर छोड़ते हैं। स्कूलों को भी नियमानुसार प्रशिक्षण पूरा करने के सात दिन के भीतर प्रमाण पत्र देना होता है। यह ऑनलाइन है।"

4.33 साक्ष्य के दौरान, टीएनएयू के प्रतिनिधि ने कृषि कार्यक्रमों में छिड़काव के लिए ड्रोन के उपयोग के वर्तमान और भविष्य के पहलुओं के बारे में बताया:

"ड्रोन के संबंध में, वास्तव में हम पीछे चल रहे हैं। अधिकांश किसान कंबाइन हारवेस्टर को सेवा के रूप में उपयोग कर रहे हैं; एक व्यक्ति आएगा और पूरे गांव का फसल काटेगा। मुझे लगता है कि ड्रोन जल्द ही इस तरह का हो जाएगा। यह केवल नैनो यूरिया के लिए ही नहीं बल्कि कीटनाशकों और शाकनाशियों के संपूर्ण अनुप्रयोग के लिए भी है। हमने बीज छिड़काव और बुवाई पर अनुसंधान कार्य शुरू कर दिया है। जल्द ही धान की सीधी बुबाई देखने को मिलेगी। कई देशों, जैसे वियतनाम और श्रीलंका में, चावल की नब्बे प्रतिशत सीधी बुवाई से होती है। अगर हम केवल कड़ी मेहनत करें और बुबाई के उद्देश्य से भी ड्रोन का उपयोग करें तो यह संभव हो सकता है। इसलिए, स्कोप बहुत ज्यादा है और ड्रोन, शायद, भारतीय किसानों को प्रौद्योगिकी परिवर्तन के अगले स्तर तक ले जाने का साधन होगा, जिसके बारे में हम वास्तव में सोचते हैं। यह उन बातों में से एक है जिस पर शायद हमें बहुत तेजी से काम करना चाहिए।

(v) नैनो उर्वरकों के ड्रोन स्प्रे की सुविधा के लिए कॉरपोरेट सामाजिक दायित्व (सीएसआर) निधि

4.34 सिमिति ने यह पाया है कि नैनो उर्वरकों को अगली पीढ़ी के स्मार्ट उर्वरकों के रूप में माना गया है जो पारंपिरक यूरिया और अन्य रासायिनक उर्वरकों के असंतुलित और अत्यिधक उपयोग के मुद्दे का समाधान कर सकते हैं। जब विशेष चिह्नित क्षेत्र (उनके द्वारा अपनाए गए) के किसानों को नैनो यूरिया के छिड़काव के लिए रियायती दरों पर / नि:शुल्क ड्रोन की सुविधा प्रदान करने और स्थानीय ग्रामीण उद्यमियों और किसानों को इसके उपयोग के बारे में ड्रोन पायलट प्रशिक्षण देने के लिए अपनी कॉरपोरेट सामाजिक दायित्व (सीएसआर) निधि के उपयोग के लिए कंपिनयों/कॉरपोरेट घरानों को प्रोत्साहित करने हेतु अब तक किए गए उपायों के बारे में बताने के लिए कहा गया, विभाग ने निम्नवत् उत्तर दिया:

"उर्वरक विभाग ने विचार करने हेतु नोट किया।"

v <u>नैनो यूरिया को बढ़ावा देना</u>

(i) नैनो यूरिया को बढ़ावा देने के लिए अपनाए गए तरीके

5.1 किसानों के बीच नैनो उर्वरकों के उपयोग को बढ़ावा देने के लिए की जा रही पहल के संबंध में, उर्वरक विभाग के सचिव ने साक्ष्य के दौरान निम्नवत् बताया:

"नैनो यूरिया के उपयोग को बढ़ावा देने के लिए हमने प्रगतिशील किसानों के माध्यम से नैनो यूरिया के उपयोग पर ग्राम स्तर पर प्रदर्शन सिहत कई गितिविधियां शुरू की हैं। किसान सम्मेलनों में नैनो यूरिया के उपयोग को लेकर हम किसानों को जागरूक कर रहे हैं। अलग-अलग क्षेत्रीय भाषाओं में भी फिल्में बनाई गई हैं। हम सूचना के प्रसार और किसानों के बीच नैनो यूरिया के उपयोग को बढ़ावा देने के लिए सोशल मीडिया का व्यापक रूप से उपयोग कर रहे हैं। कॉल सेंटर भी हैं। रेडियो और डीडी किसान चैनल और अन्य टेलीविजन चैनलों पर नियमित बातचीत और पैनल चर्चा आयोजित की जा रही है। नैनो यूरिया की फसल विशिष्ट सही मात्रा के लिए किसानों के लिए एक प्रशिक्षण मॉड्यूल तैयार किया जा रहा है। चूंकि यह एक नैनो संस्करण है, इसलिए यह नितांत आवश्यक हो जाता है कि किसान फसलों पर नैनो यूरिया की सही मात्रा या सही खुराक का उपयोग करें।

5.2 इसी तरह के संदर्भ में, उन्होंने निम्नवत् बताया:

"मैं सबसे पहले यह बताना चाहूंगा कि नैनो यूरिया दुनिया में पहली बार हमारे साइंटिस्ट्स ने डेवलप किया है और इसका क्रेडिट हमारी पूरी टीम ऑफ साइंटिस्ट्स को जाता है। उन्होंने पेटेंट भी फाइल कर दिया है। वे नैनो, डीएपी, जिंक, बोरान और अन्य उर्वरकों के विभिन्न संस्करणों पर भी काम कर रहे हैं। मुझे विश्वास है कि इससे खाद का आयात कम होगा और किसान भविष्य में नैनो के प्रयोग से वास्तव में संतुष्ट होंगे क्योंकि हम किसानों के बीच इस उत्पाद को लोकप्रिय बनाने में कोई कसर नहीं छोड़ रहे हैं और किसानों के बीच इस उत्पाद को लोकप्रिय बनाने की पहल करने के लिए हमारी मासिक बैठकों में राज्य सरकारों से बार-बार अनुरोध किया जाता है।, ।"

- 5.3 अपने लिखित उत्तर में विभाग ने यह भी बताया है कि जागरूकता शिविरों, वेबिनार, नुक्कड़ नाटकों, क्षेत्र प्रदर्शनों, किसान सम्मेलनों और क्षेत्रीय भाषाओं में फिल्मों आदि के माध्यम से नैनो उर्वरक को बढ़ावा दिया जा रहा है। नैनो यूरिया के उपयोग को बढ़ावा देने के लिए विभाग ने अंग्रेजी, हिंदी और चार अन्य क्षेत्रीय भाषाओं में नैनो यूरिया पर एक फिल्म तैयार की है। इसके अलावा, विभाग ने आवश्यकता पड़ने पर नैनो उर्वरक निर्माताओं को हर सहायता प्रदान की है। नैनो उर्वरक निर्माता किसानों को फसल, मृदा आदि के अनुसार नैनो उर्वरकों का उपयोग करने के लिए शिक्षित कर रहे हैं।
- 5.4 इस संदर्भ, में इफको ने बताया है कि उसने पूरे देश में नैनो यूरिया के उपयोग के लिए व्यापक प्रचार और लोकप्रिय बनाने के प्रयास किए हैं। इस प्रक्रिया में नैनो यूरिया के लाभों, इसके प्रयोग की विधि, कार्य प्रणाली और इसकी उपलब्धता के बारे में बताने के लिए प्रिंट और इलेक्ट्रॉनिक मीडिया, सोशल और डिजिटल प्लेटफॉर्म, प्रचार और विस्तार कार्यक्रम संचालित किए गए हैं। इफको ने नैनो यूरिया को लोकप्रिय बनाया है और तत्काल बिक्री और प्रतिक्रिया प्राप्त करने के लिए इसे अपने बाजार चैनल के माध्यम से बेच रहा है। बिक्री अभियान चलाने और 'अभी खरीदें' के लिए प्रोत्साहन प्रदान करके किसानों को इसे खरीदने के लिए प्रोत्साहित किया जाता है। बिक्री संवर्धन विज्ञापन का पूरक है जो स्थानीय, राष्ट्रीय और अंतरराष्ट्रीय स्तरों पर किया जा रहा है। इफको ने नीचे दी गए कार्यक्रमों की एक श्रृंखला के माध्यम से नैनो यूरिया को लोकप्रिय बनाने के लिए प्रभावी बिक्री, प्रचार और बढ़ावा देने के प्रयास किए हैं। साथ ही, प्रचार और बाजार विकास कार्यक्रम भी चलाए जा रहे हैं।

- (क) फसल प्रदर्शन: भारत में 200 से अधिक फसलें पैदा होती हैं, जिनके अलग-अलग कृषि विज्ञान है। 'देखें और विश्वास करें' की अवधारणा के अनुरूप इफको ने प्रमुख कृषि-जलवायु क्षेत्रों और देश की प्रमुख फसलों पर ऑन-फार्म और ऑन-स्टेशन परीक्षण किए थे। देश के 15 कृषि-जलवायु क्षेत्रों में 94 से अधिक फसलों में किसानों के खेतों पर अनुसंधान परीक्षण किए गए हैं। प्रगतिशील और आस-पास के किसानों ने भी इन परीक्षणों के समय दौरा किया है जिससे उत्पाद के बारे में रुचि और जागरूकता पैदा करने में मदद मिली है।
- (ख) नैनो यूरिया की छोटी वीडियो फिल्में: इफको नैनो यूरिया (तरल) के अनुप्रयोग के अनूठे लाभों तथा सम्पूर्ण पैकेज को प्रदर्शित करने वाले छोटी अवधि के तकनीकी और शिक्षाप्रद वीडियो (4-6 मिनट के) ऑनलाइन प्लेटफॉर्मों के माध्यम से उपलब्ध कराए गए हैं। ये वीडियो या तो किसानों को दिखाए जा रहे हैं या किसान-मित्र व्हाट्सएप समूहों में साझा किया जाते हैं। इस नये उर्वरक के बारे में अपने अनुभव और लाभों को दिखाते हुए फार्मर्स टेस्टिमोनियल वीडियो (120 सेकंड; 60 सेकंड) चैनल भागीदारों, सहकारी अधिकारियों और नीति निर्माताओं को भी भेजे जाते हैं। दर्शकों की सीमित ध्यान अवधि का लाभ उठाने के लिए, नैनो यूरिया के छोटे क्लिप या 'फीलर' वीडियो (20-30 सेकंड के) बनाए गए हैं। इन वीडियो को राष्ट्रीय और अंतरराष्ट्रीय सहकारी मंचों पर सेमीनारों, संगोष्ठियों और कार्यशालाओं में सोशल, मास मीडिया और डिजिटल प्लेटफॉर्म पर दिखाया जा रहा है अथवा दिखाया गया है। किसान हाट, कृषि मेलों और ग्राम सामुदायिक केंद्रों में आने वाले किसानों को उत्पाद के ब्योरे से अवगत कराया जाता है।
- (ग) प्रिंट और इलेक्ट्रॉनिक मीडिया : प्रिंट और इलेक्ट्रॉनिक मीडिया के माध्यम से उत्पाद का बड़े पैमाने पर प्रचार किया गया है। प्रिंट और डिजिटल मीडिया में नियमित रूप से प्रेस विज्ञप्ति जारी की जा रही है। प्रमुख समाचार पत्रों में विज्ञापन छापे गए हैं और सोशल मीडिया और डिजिटल नेटवर्क पर भी प्रदर्शित किए गए हैं। प्रमुख समाचार पत्रों के साथ-साथ कृषि केंद्रित क्षेत्रीय और स्थानीय समाचार पत्रों में भी नैनो यूरिया के उपयोग के बारे में किसानों की सफलता की कहानियों का उल्लेख हुआ है। राज्य कृषि विश्वविद्यालयों के सहयोग से कुलपित और प्रमुख कृषि वैज्ञानिकों और सहकारी समितियों के पदाधिकारियों की उपस्थित में नैनो यूरिया पर वेबिनार आयोजित किया गया है। वेबिनार के दौरान उर्वरक के लाभ, अनुप्रयोग की पद्धित और अन्य विवरणों पर चर्चा की जाती है और दर्शकों के प्रश्नों का उपयुक्त उत्तर दिया जाता है। वैज्ञानिकों द्वारा किए गए शोध कार्य को स्थानीय/क्षेत्रीय पत्रिकाओं, समाचार पत्रों, पत्रिकाओं आदि में शोध-पत्र के साथ-

साथ लोकप्रिय लेखों के रूप में प्रलेखित किया जाता है। वे नैनो यूरिया के बारे में ज्ञान और समझ हासिल करने के लिए एक संदर्भ बिंदु के रूप में कार्य करते हैं। युवा और प्रभावशाली मस्तिष्कों की कल्पना को आकर्षित करने के लिए, गांव के स्कूलों में नैनो यूरिया जागरूकता कार्यक्रम/प्रश्नोत्तरी आयोजित किए जा रहे हैं। ऑल इंडिया रेडियो/सामुदायिक रेडियो/क्षेत्रीय चैनलों पर विज्ञापन नैनो यूरिया के बिक्री संवर्धन और विपणन प्रयासों का अभिन्न अंग हैं। नैनो यूरिया के बारे में जानकारी अंतरराष्ट्रीय मीडिया द्वारा भी कवर की गई है।

(घ) मास मीडिया अभियान: नैनो यूरिया के प्रचार और इसे अंतिम व्यक्ति तक पहुंचाने के लिए मास मीडिया अभियान, ऑडियो विजुअल और प्रचार वैन चल रही हैं, प्रगतिशील और उद्यमी किसान ब्रांड एंबेसडर के रूप में काम करते हैं। नैनो यूरिया के अनुप्रयोग के विभिन्न पहलुओं, इसकी सामग्री और किसानों तथा पर्यावरण के लिए लाभ पर जोर दिया जाता है। नैनो यूरिया समाचार को राष्ट्रीय/क्षेत्रीय समाचारों के नीचे ब्रेकिंग/ट्रोल समाचार के रूप में भी दिखाया जाता है। इफको प्रगतिशील किसानों को इस उत्पाद की उपलब्धता के बारे में सूचित करने के लिए चुनिंदा एसएमएस संदेश भेजे जा रहे हैं। रेडियो जिंगल्स/ऑडियो क्लिप/स्थानीय भाषा में गाने क्षेत्रीय केंद्र/ आकाशवाणी पर प्रीमियम समय पर बजाए जाते हैं जबिक ऑडियो संदेश किसानों के विभिन्न व्हाट्सऐप समूहों में भी प्रसारित किए जाते हैं। किसानों से जुड़े उत्पाद की मुख्य विशेषताओं से संबंधित आकर्षक कविताओं, दोहों और नारों के रूप में जागरूकता अभियान तैयार करने के लिए प्रचार सामग्री परिचालित या प्रदर्शित की जा रही है। दीवार/ट्रैक्टर ट्रॉली/बस पैनल/रिक्शा/तिपहिया वाहन पेंटिंगों, होर्डिंगों आदि के अलावा प्रमुख स्थानों पर बैनर और पोस्टर लगाये जाते हैं। सुविधाजनक और कार्यनीतिक दृष्टि से खास स्थानों तथा किसानों की सर्वाधिक आवाजाही वाले स्थानों अर्थात सभी बिक्री केंद्रों, किसान मित्र क्लबों कृषि विज्ञान केंद्रों; किसान भंडारों; सामान्य सेवा केंद्रों (सीएससी); किसान उत्पादक संगठनों, किसान मंडियों और हाटों आदि पर भी डिजिटल डिस्प्ले लगाए जाते हैं।

इफको नैनो यूरिया विशिष्ट शो, स्किट, नुक्कड़ नाटक और लोकल वोकल समूहों को भी प्रायोजित कर रहा है। छिड़काव अभियान चलाए जा रहे हैं जिसमें भूमि के आकार के अनुरूप छिड़काव लागत की सब्सिडी दी जाती है और किसान के भूखंडों पर समूह छिड़काव या सामूहिक फसल छिड़काव किया जाता है। अमृत महोत्सव; पृथ्वी दिवस; विश्व पर्यावरण दिवस, विश्व खाद्य दिवस आदि जैसे महत्वपूर्ण राष्ट्रीय/अंतरराष्ट्रीय

कार्यक्रमों के दौरान जागरूकता कार्यक्रम आयोजित किए जा रहे हैं। कलोल संयंत्र से नैनो यूरिया का प्रेषण 5 जून 2021 (विश्व पर्यावरण दिवस) को शुरू किया गया था।

- (ङ) प्रचार सामग्री, उपहार और पुरस्कार: सहकारी सिमितियों और अन्य बिक्री केंद्रों को प्रचार सामग्री जैसे स्टिकर, डिस्प्ले चार्ट, ब्रोशर, पैम्फलेट, नैनो यूरिया का साहित्य; नैनो बोतलों की प्रतिकृति और स्मारिका; टी-शर्ट, कैप, चाबी के छल्ले, छाता, तोरण आदि उपलब्ध कराए गए हैं। गणमान्य व्यक्तियों और वैज्ञानिकों को नैनो यूरिया के नमूने और ब्रोशर/फोल्डर प्रदान किए जाते हैं। इसके प्रचार-प्रसार में लगे प्रगतिशील किसानों को विभिन्न मंचों पर सम्मानित किया जाता है।
- (च) डेडिकेटेड इंटरनेट साइट : नैनो यूरिया के लिए डेडिकेटेड इंटरनेट साइट बनाई गई है। साइट सभी प्रकार के इंटरनेट प्लेटफॉर्म पर चल सकती है और एंड्रॉइड/आईओएस-आधारित है। यह नैनो यूरिया, इसके लाभ, नैनोटेक क्षेत्र में इफको की यात्रा, नैनो-उर्वरक, किसानों द्वारा इसकी अच्छाइयों के वर्णन, सार्वजनिक हस्तियों द्वारा समर्थन और नेताओं की राय पर ज्ञान संसाधन और भंडार के रूप में काम करती है। उपयोगकर्ता और खरीददार द्वारा उत्पाद के बारे में मांगी जाने वाली विशिष्ट जानकारी और दस्तावेजों के अलावा; फोटो गैलरी में नैनो यूरिया के लिए आयोजित कार्यक्रमों को दर्शाया गया है। आगंतुकों के प्रश्नों का भी समाधान किया जाता है। साइट पर नैनो यूरिया के प्रयोग और लाभ के वीडियो भी उपलब्ध हैं।
- (छ) प्रशिक्षण एवं जागरूकता कार्यक्रम : नैनो यूरिया अभिनव और अनूठा उत्पाद है। अतः इसकी समुचित जानकारी एवं जागरूकता हेतु कोविड प्रोटोकॉल का पालन करते हुए जिला/ब्लॉक/ग्राम स्तर/सहकारिता/खुदरा विक्रेता स्तर पर नियमित रूप से प्रशिक्षण कार्यक्रम आयोजित किये जा रहे हैं। प्रशिक्षण और कार्यशालाएं, संगोष्ठी, वेबिनार, पैनल चर्चा, 'लाइव इन' और 'स्ट्रीम इन' कार्यक्रम आयोजित किए जा रहे हैं। इन प्रशिक्षण कार्यक्रमों में सामान्य रूप से कृषि और विशेष रूप से पर्यावरण के सामने आने वाली समस्याओं का समाधान तथा नैनो यूरिया किस प्रकार सघन कृषि पद्धतियों के बुरे प्रभावों को कम करने में सहायक है, के विषय में अवगत कराया जाता है। प्रतिभागियों को उन सुरक्षा पहलुओं और सावधानियों से भी अवगत कराया जाता है जिनका प्रयोग किया जाना चाहिए। प्रशिक्षुओं से प्रशिक्षण के बारे में प्रतिक्रिया ली जाती है ताकि संभावित सुधार और प्रगति की जा सके। इन प्रशिक्षण कार्यक्रमों के प्रशिक्षक इफको के अधिकारी और अनुसंधान संस्थानों, राज्य कृषि विश्वविद्यालयों और आईसीएआर-कृषि विज्ञान केंद्रों के तकनीकी और प्रसार विशेषज्ञ हैं। प्रशिक्षकों के प्रशिक्षण पर भी जोर दिया जा रहा है।

किसानों के अलावा इन कार्यक्रमों में भाग लेने वालों में तकनीकी और विस्तार विशेषज्ञ; नैनोटेक्नोलॉजिस्ट; लोकप्रिय हस्तियां; ओपिनियन लीडर्स और प्रभावशाली हस्तियां; लब्धप्रतिष्ठित व्यक्ति, उद्यमी; सरकारी अधिकारी; पर्यावरण विशेषज्ञ; कुलपित; एसएयू/अनुसंधान संस्थानों आदि के निदेशक शामिल हैं। नैनो प्रौद्योगिकी के क्षेत्र में कार्य कर रहे भारतीय प्रौद्योगिकी संस्थान, नई दिल्ली जैसे प्रमुख अनुसंधान संस्थानों द्वारा नैनो यूरिया पर भी ध्यान दिया जा रहा है और इसका उल्लेख किया जा रहा है।

(ज) राज्य-वार कार्यक्रमों की शुरूआत औरओपिनियन लीडर्स, सरकारी अधिकारियों और वैज्ञानिकों द्वारा अनुसमर्थन: 17 राज्य/संघ राज्य क्षेत्रों के लिए राज्यवार अद्वितीय कार्यक्रमों की शुरूआत की गई, जिनमें मुख्यमंत्री, कृषि मंत्री, कृषि आयुक्त, निदेशक, कृषि, सहकारी नेता, संबंधित राज्यों के महत्वपूर्ण गणमान्य व्यक्तियों ने भाग लिया। इसके परिणामस्वरूप नैनो यूरिया की आपूर्ति और उपलब्धता के साथ-साथ किसानों और चैनल भागीदारों के बीच इसके प्रचार के संबंध में राज्य मशीनरी, कृषि विभाग, चैनल भागीदार, उत्पादन और वितरण नेटवर्क जागरुक हो गये हैं। राज्यों के कृषि विभाग भी सरकारी फार्मों और किसानों के खेतों में परीक्षण कर रहे हैं। कुछ राज्य नैनो यूरिया उत्पाद के बारे में जानकारी साझा करके, प्रदर्शनी आयोजित करके तथा किसानों के बीच इसका प्रचार करके इसके उपयोग को बढ़ाने में मदद कर रहे हैं।

(ii) नैनो उर्वरकों के लिए जांच प्रयोगशालाएँ।

5.5 सिमिति ने इच्छा व्यक्त की थी कि गुणवत्तापरक नैनो उर्वरकों के उत्पादन और बिक्री को सुनिश्चित करने के लिए पूरे देश में गुणवत्तापरक जांच प्रयोगशालाएं स्थापित की जानी चाहिए। इसके उत्तर में, विभाग ने बताया है कि वे गुणवत्तापरक नैनो उर्वरकों का उत्पादन और बिक्री सुनिश्चित करने के लिए देश भर में गुणवत्तापरक जांच प्रयोगशालाओं की स्थापना के लिए कृषि एवं किसान कल्याण विभाग से अनुरोध करें।

(iii) नैनो उर्वरकों का समान वितरण

5.6 यह देखते हुए कि पूरे देश में किसानों द्वारा नैनो उर्वरकों की भारी मांग होगी, सिमिति ने यह जानना चाहा कि विभाग ने किसानों की मांग को पूरा करने और पूरे देश में नैनो यूरिया के समान वितरण के लिए क्या योजना बनाई है। इसके उत्तर में, यह बताया गया है कि इफको द्वारा नैनो यूरिया 240 रुपये प्रति 500 एमएल बोतल के एमआरपी पर बेचा जा रहा है, जिसमें कोई सब्सिडी घटक शामिल नहीं है।

(iv) उर्वरक के कच्चे माल पर बुनियादी सीमा शुल्क में राहत की आवश्यकता

5.7 साक्ष्य के दौरान, सिमिति ने पूछा कि क्या नैनो उर्वरकों के उत्पादन के लिए उपयोग किया जाने वाला कच्चा माल स्वदेशी है। इस बारे में इफको के प्रतिनिधि ने निम्नवत् उत्तर दिया:

"...हमारे देश में, हमारे पास उर्वरकों के उत्पादन के लिए पर्याप्त कच्चा माल नहीं है। हमारे पास पर्याप्त गैस नहीं है; हमारे पास पर्याप्त तेल नहीं है; हमारे पास रॉक फॉस्फेट नहीं है; हमारे पास पोटाश नहीं है। ऐसे में हमें अलग तरीके से सोचने की जरूरत है।"

5.8 यह पूछे जाने पर कि क्या भारत में नैनो उर्वरकों के नियमित उत्पादन के लिए आवश्यक सभी चीजें उपलब्ध हैं, इफको के प्रतिनिधि ने निम्नवत् बताया:

"कुछ भी आयात नहीं किया जाता है."

...... सब कुछ स्वदेशी है। स्वदेशी तौर पर हमने शोध किया है; स्वदेशी रूप से हमने निर्मित किया है; और यह विश्व के लिए उपलब्ध है।

.....हमारे देश में अगर हमें आत्मिनर्भर बनना है तो शुरू से ही आत्मिनर्भर बनना होगा। नहीं तो हम कच्चे माल पर निर्भर हैं और फिर हमारा शोषण होगा। उर्वरक का कच्चा माल कुछ ही देशों में उपलब्ध है और आज रूस-यूक्रेन युद्ध के बाद व्यावहारिक रूप से यह केवल एक देश कनाडा में उपलब्ध है, अन्यथा इज़राइल और जॉर्डन के पास कनाडा के कच्चे माल का 20 प्रतिशत है। इस तरह मोटे तौर पर 30 से 40 फीसदी क्षमता समाप्त हो गई है। इसलिए, हमें इस सारे विज्ञान को काम में लाने की जरूरत है; हमें संयंत्र को डिजाइन करने के लिए इंजीनियरों, प्रौद्योगिकीविदों को लाने की जरूरत है। कोई विदेशी प्रौद्योगिकी डिजाइन नहीं है। यह डिजाइन पूरी तरह स्वदेशी है।"

5.9 पीएण्डके कच्चे माल से समृद्ध देशों में संयुक्त उद्यमों के माध्यम से नैनो प्रौद्योगिकी आधारित पीएण्डके उर्वरकों के उपयोग को बढ़ावा देने और वित्त मंत्रालय के समन्वय में पीएण्डके उर्वरक के कच्चे माल पर बुनियादी सीमा शुल्क को युक्तिसंगत बनाने/छूट देने

ताकि देश में नैनो आधारित उत्पादन संयंत्रों की स्थापना को प्रोत्साहित किया जा सके और जिसके परिणामस्वरूप विदेशी मुद्रा की भारी बचत हो सकती है, के संबंध में सरकार की योजना के बारे में पूछे जाने पर, विभाग ने यह बताया कि वह उपर्युक्त सुझावों पर विचार करेगा और यदि आवश्यक हो तो तदनुसार कार्यवाही करेगा।

भाग-दो टिप्पणियां और सिफारिशें

समिति यह नोट करके गंभीर रूप से चिंतित है कि विश्व भर में कृषि को व्यापक चुनौतियों का सामना करना पड़ रहा है, जैसे कि फसल की पैदावार में ठहराव, कम पोषक तत्व उपयोग दक्षता (एनयूई), मिट्टी के कार्बनिक पदार्थों में गिरावट, बहु-पोषक तत्वों की कमी, सिकुड़ती कृषि योग्य भूमि और पानी की उपलब्धता। उर्वरक पौधों द्वारा उनकी ईष्टतम उत्पादकता के लिए आवश्यक पोषक तत्व प्रदान करते हैं। हालांकि, वर्तमान में किसान आमतौर पर सतह ब्रॉडकास्टिंग, उपसतह प्लेसमेंट या सिंचाई के पानी के साथ मिश्रण करके मिट्टी के माध्यम से उर्वरकों का उपयोग करते हैं। यह चिंताजनक है कि इस प्रक्रिया में, यूरिया जैसे थोक पारंपरिक उर्वरकों का एक बड़ा हिस्सा वायुमंडल या सतही जल निकायों में खो जाता है, जिससे पारिस्थितिकी तंत्र प्रदूषित हो जाता है। यह निराशाजनक है कि भारत में उर्वरक की खपत असंतुलित है, और यूरिया अधिकांश फसलों पर लागू नाइट्रोजनयुक्त उर्वरकों का 82% से अधिक है। इसके अलावा, नाइट्रोजन, फास्फोरस और पोटेशियम (एनपीके) खपत अनुपात 2009-10 में 4:3.2:1 से बढ़कर 2019-20 में 7:2.8:1 हो गया है। माननीय प्रधान मंत्री ने "रासायनिक उर्वरक खपत विशेष रूप से यूरिया में 50% की कमी" का आह्वान किया है। इस पृष्ठभूमि में, यह नोट करना संतोषजनक है कि इंडियन फार्मर्स फर्टिलाइजर कोऑपरेटिव लिमिटेड (इफको) ने स्वदेशी रूप से नैनो प्रौद्योगिकी आधारित नैनो यूरिया उर्वरक विकसित किया है और पारंपरिक यूरिया के असंतुलित और अत्यधिक उपयोग के मुद्दे का समाधान करने का प्रयास किया है। नैनो यूरिया नाइट्रोजन का एक स्रोत है जो एक पौधे की उचित वृद्धि और विकास के लिए आवश्यक एक प्रमुख आवश्यक पोषक तत्व है। आमतौर पर, एक स्वस्थ पौधे में नाइट्रोजन सामग्री 1.5 से 4% की सीमा में होती है। किसी पौधे के महत्वपूर्ण फसल विकास चरणों में नैनो यूरिया का पूर्ण अनुप्रयोग प्रभावी रूप से इसकी नाइट्रोजन आवश्यकता को पूरा करता है और उच्च फसल उत्पादकता की ओर जाता है। कृषि एवं परिवार कल्याण मंत्रालय (एम/ओ ए एंड एफडब्ल्यू) ने फरवरी, 2021 में उर्वरक नियंत्रण आदेश (एफसीओ), भारत सरकार के तहत नैनो यूरिया को नैनो उर्वरक के रूप में अधिसूचित किया है।

हमारे देश की कृषि संबंधी जरूरतों के लिए नैनो उर्वरकों के महत्व को ध्यान में रखते हुए, सिमिति नैनो यूरिया के विकास में इफको के प्रयासों की सराहना करती है। यह विश्व में पहली बार है कि नैनो यूरिया की किसानों के लिए शुरूआत की गई है।

जैसाकि सिमिति द्वारा विचार-विमर्श किया गया था, उर्वरक विभाग (डीओएफ) /इफको तथा अन्य संबंधित मंत्रालयों द्वारा देश में नैनो उर्वरकों की उपलब्धता, उपयोग, संवर्धन और अनुकूलनशीलता के लिए उठाए गए कदमों का ब्यौरा अगले पैराग्राफ में दिया गया है। साथ ही, सिमित यह चाहती है कि उर्वरक विभाग यह सुनिश्चित करे कि इस प्रकार उठाए गए कदमों में प्रक्रियात्मक विलंब न हो और इस तरह के विलंब, यदि कोई हों, को कुशल, उचित प्रबंधन और समय पर कार्रवाई के साथ टाला जाए।

- 2. सिमित ने यह नोट किया है कि इफको ने पर्यावरण के अनुकूल सतत कृषि सुनिश्चित करने के लिए अन्य नैनो उर्वरक सूक्ष्मपोषक ग्रेड नैनो डीएपी और द्वितीयक/सूक्ष्म पोषक ग्रेड नैनो जिंक, नैनो कॉपर, नैनो बोरान, नैनो सल्फर आदि लाने के लिए प्रौद्योगिकी विकसित की है। नैनो डीएपी का फील्ड परीक्षण चल रहा है। बीस राज्यों में चौंतीस स्थानों पर दस से अधिक फसलों पर अनुसंधान परीक्षण किए गए हैं और परिणाम कृषि विभाग को आगे सत्यापन और अनुमोदन और एफसीओ के तहत इसे शामिल करने के लिए प्रस्तुत किए गए हैं। कृषि में नैनो उर्वरकों के महत्व को ध्यान में रखते हुए सिमित उर्वरक विभाग और इफको से यह आग्रह करती है कि वे अन्य नैनो उर्वरकों, जिन्हें इफको द्वारा विकसित किया गया है और जिनका पर्याप्त फील्ड परीक्षण किया गया है, को एफसीओ के अंतर्गत शामिल करने की प्रक्रिया में तेजी लाएं ताकि उनका वाणिज्यिक उपयोग किया जा सके। सिमित की यह इच्छा है कि अन्य नैनो उर्वरकों की लागत उनके पारंपरिक थोक समकक्षों के प्रचलित मूल्य की तुलना में काफी सस्ती होनी चाहिए।
- 3. सिमिति ने यह उल्लेख किया है कि नैनो उर्वरकों के कई फायदे हैं जैसे कि उनकी लागत सब्सिडी वाले पारंपरिक उर्वरकों से कम है। इफको के फील्ड परीक्षण से यह पता चला है कि नैनो यूरिया की 500 मिलिलीटर की बोतल पारंपरिक यूरिया के एक 45 किलोग्राम बैग की जगह ले सकती है और इस प्रकार

इसकी आवश्यकता को कम से कम 50 प्रतिशत तक कम कर सकती है। इफको की नैनो यूरिया की वर्तमान एमआरपी 240 रुपये प्रति 500 मिलिलीटर की बोतल है, जो पारंपरिक 45 किलोग्राम यूरिया बैग से लगभग 10% कम है, जिसकी सब्सिडी मूल्य 266.50 रुपये प्रति बैग है। इसके अलावा, नैनो उर्वरकों को ले जाना और भण्डारण करना आसान है। वे कम परिवहन और भंडारण लागत के मामले में किफायती हैं। इसके अलावा, नैनो उर्वरकों के उपयोग से किसानों के लिए बेहतर फसल उत्पादकता और उच्च आय होती है। इफको ने आईसीएआर-केवीके के सहयोग से 94 फसलों पर 11,000 अखिल भारतीय किसान फील्ड परीक्षण किए हैं और नैनो यूरिया के उपयोग के साथ औसतन 8% अधिक फसल उपज पाई है। इससे किसानों को 2000 से 5000 रुपये प्रति हेक्टेयर की आय होती है। नैनो उर्वरकों के अनुप्रयोग से बेहतर मृदा स्वास्थ्य, वायु और जल गुणवत्ता के संदर्भ में लाभ होता है, जो अंततः फसल उत्पादन प्रणालियों की कुल कारक उत्पादकता (टीएफपी) में सुधार के माध्यम से किसानों को लाभान्वित करेगा। अंतर्राष्ट्रीय चावल अनुसंधान संस्थान (आईआरआरआई) की अंतरिम रिपोर्ट के अनुसार, यदि भारत के चावल की खेती के 50 प्रतिशत क्षेत्र को नैनो यूरिया के तहत लाया जाता है, तो इससे ग्रीन हाउस गैस उत्सर्जन में 4.6 मिलियन टन की कमी आएगी। यहां तक कि अगर बेकार जा रहे यूरिया का 20-30 प्रतिशत भी बदला जा सकता है और उसका उपयोग किया जा सकता है, तो ग्रीन हाउस गैस उत्सर्जन के मुद्दे को उचित रूप से समाधान किया जा सकता है।

नैनो उर्वरकों के कई लाभों के बावजूद, जो बढ़ती आबादी की जरूरतों को पूरा करने के लिए हमारी कृषि खाद्य उत्पादन प्रणालियों (एफपीएस) के लिए महत्वपूर्ण हैं, सिमित को यह नोट करके खेद है कि नैनो प्रौद्योगिकी के लिए उर्वरक विभाग द्वारा कोई अलग से निधियां आवंटित नहीं की गई है। चूंकि नैनो प्रौद्योगिकी नैनो उर्वरकों के विकास के लिए अनुसंधान का एक आशाजनक क्षेत्र है जो न्यूनतम पर्यावरण प्रभाव के साथ कम या घटते पोषक तत्व उपयोग दक्षता (एनयूई) के मुद्दे का समाधान करने के लिए एक अभिनव समाधान के रूप में उभरा है, इसलिए यह जरूरी है कि मंत्रालय / उर्वरक विभाग अपने उर्वरक पीएसयू के माध्यम से नैनो टेक्नोलॉजी आधारित अनुसंधान गतिविधियों के लिए एक बड़ी राशि आवंटित करे ताकि इस पर अभिनव उर्वरक उत्पादों जो लागत प्रभावी तथा कुशल है को विकसित करने के लिए ध्यान केंद्रित किया जा सके।

उर्वरक पीएसयू को इफको के साथ-साथ सामान्य अनुसंधान परियोजनाओं पर काम करने के लिए पूरी तरह से सहायता दी जानी चाहिए ताकि वे विभिन्न नैनो उर्वरकों (मैक्रो और माइक्रो पोषक तत्व आधारित दोनों) के विकास में योगदान दें और भारतीय उर्वरक क्षेत्र में आत्मनिर्भरता प्राप्त करने में मदद करें जिससे उर्वरकों के आयात पर खर्च की गई विदेशी मुद्रा की पर्याप्त मात्रा में बचत हो, जिसने वर्षों से बढ़ती हुई प्रवृत्ति दिखाई है।

समिति ने हमारे देश में उर्वरकों की मांग को पूरा करने के लिए पिछले कुछ वर्षों में यूरिया के आयात में निरंतर वृद्धि पर चिंता व्यक्त की है। वर्ष 2016-17 के दौरान, यूरिया का आयात 54.81 लाख मीट्रिक टन था और यह वर्ष 2020-21 के दौरान 98.28 लाख मीट्रिक टन तक पहुंच गया है। यूरिया आयात के कारण सब्सिडी का बोझ सरकार द्वारा एक वर्ष में भुगतान की गई कुल यूरिया सब्सिडी का 26% है। मौजूदा परिस्थितियों के बीच, सिमित का यह मानना है कि यूरिया का विवेकपूर्ण अनुप्रयोग आज की आवश्यकता है और नैनो उर्वरक निश्चित रूप से यूरिया के आयात पर हमारे देश की निर्भरता को कम करने के लिए महत्वपूर्ण भूमिका निभा सकते हैं। जैसा कि प्रस्तुत किया गया है, महत्वपूर्ण फसल विकास चरणों में नैनो उर्वरकों के सटीक अनुप्रयोग के साथ, पारंपरिक उर्वरकों का लगभग 25 से 50% प्रतिस्थापन संभव है। नतीजतन, नैनो यूरिया के उपयोग के साथ, भारत सरकार लगभग 3 बिलियन अमरीकी डालर बचा सकती है, जो यूरिया की लगभग 20,000 रुपये प्रति मीट्रिक टन की सब्सिडी को ध्यान में रखते हुए प्रति वर्ष सब्सिडी बिल में लगभग 25,000 करोड़ रुपये के बराबर है। समिति यह जानकर प्रसन्न है कि वर्ष 2023 तक इफको के दो संयंत्र हर वर्ष 11 करोड़ बोतलों के कुल उत्पादन के साथ चालू हो जाएंगे। 50 लाख मीट्रिक टन पारंपरिक यूरिया को बदलने की आशा है। वर्ष 2023-24 तक, प्रति वर्ष 28 करोड़ बोतलों के उत्पादन के साथ 5 संयंत्र चालू हो जाएंगे और अपेक्षित प्रतिस्थापन 127 लाख मीट्रिक टन पारंपरिक यूरिया है। वर्ष 2025-26 तक, सभी प्रस्तावित आठ संयंत्र चालू हो जाएंगे और कुल उत्पादन हर वर्ष 44 करोड़ बोतल होगा और उन्हें 200 लाख मीट्रिक टन यूरिया की जगह लेने की आशा है। समिति यूरिया के अपेक्षित प्रतिस्थापन के आंकड़ों को उत्साहजनक मानती है और विश्वास करती है कि डीओएफ/इफको उर्वरकों की आवश्यकता को पूरा करने के

लिए हमारे देश को आत्मनिर्भर बनाने की दिशा में नैनो यूरिया के उत्पादन को बढ़ाने के लिए आगे कदम उठाएगा।

- 5. सिमिति को इस तथ्य से कुछ संतोष हुआ है कि इफको ने नैनो यूरिया की प्रौद्योगिकी को एनएफएल और आरसीएफ को हस्तांतरित कर दिया है और वे क्रमश पंजाब के नांगल और महाराष्ट्र के ट्रॉम्बे में प्रौद्योगिकी हस्तांतरण के साथ अपने संयंत्र स्थापित कर रहे हैं। विभाग ने अब इफको से यह अनुरोध किया है कि वह नैनो यूरिया प्रौद्योगिकी को बिना किसी लागत के अन्य सीपीएसयू जैसे बीवीएफसीएल और एफएसीटी को भी हस्तांतरित करे। यह मामला इफको के प्रबंधन के समक्ष विचाराधीन बताया गया है। सिमिति को इस बात की जानकारी है कि इफको ने प्रौद्योगिकी को बिना किसी रॉयल्टी के एनएफएल और आरसीएफ को हस्तांतरित कर दिया है। सिमिति को यह विश्वास है कि इफको द्वारा इस बार भी तत्काल आधार पर एक अनुकूल निर्णय लिया जाएगा ताकि नैनो यूरिया के कई लाभों के कारण इसकी बढ़ती मांग को पूरा करने के लिए नैनो यूरिया के उत्पादन को बढ़ाया जा सके।
- 6. सिमिति इस बात से अवगत है कि पूरे देश के किसानों की आवश्यकता को पूरा करने के लिए आवश्यक मात्रा में नैनो उर्वरक उपलब्ध कराने में उर्वरक विभाग की बड़ी भूमिका है। सिमिति का यह दृढ़ विश्वास है कि नैनो उर्वरकों के विनिर्माण की इच्छुक सार्वजिनक और निजी क्षेत्र की कंपनियां बेहतर कर सकती हैं और उन्हें सरकार द्वारा हर संभव सहायता दी जानी चाहिए। इस संबंध में सिमिति विभाग पर दबाव डालना चाहती है कि नैनो उर्वरकों के उत्पादन को उत्पादन-लिंक्ड प्रोत्साहन (पीएलआई) योजना के अंतर्गत लाने के लिए उचित स्तर पर इस मामले को वित्त मंत्रालय के साथ उठाया जाए ताकि नैनो उर्वरकों के उत्पादन को बढ़ावा दिये जाने के साथ उर्वरक उद्योग को बढ़ावा दिया जा सके।
- 7. सिमिति को यह सूचित किया गया है कि चूंकि हमारे देश में उर्वरकों के उत्पादन के लिए आवश्यक पर्याप्त कच्चा माल, गैस, तेल, रॉक फास्फेट, पोटाश नहीं है, इसलिए आत्मिनर्भर होने के लिए अलग तरीके से सोचने की तत्काल आवश्यकता है। सिमिति विभाग की इस आशंका को साझा करती है कि अन्य देशों पर कच्चे माल के लिए निर्भरता के मामले में, हमारे देश में दोहन का खतरा होगा क्योंकि उर्वरक कच्चा माल केवल कुछ देशों में उपलब्ध है। पूर्वगामी

को ध्यान में रखते हुए, सिमति यह सिफारिश करती है कि उर्वरक विभाग को उर्वरकों के कच्चे माल के आयात के लिए दीर्घकालिक समझौते स्थापित करने के लिए सक्रिय भूमिका निभानी चाहिए और उर्वरकों के कच्चे माल से समृद्ध देशों में खरीद वापसी व्यवस्था के साथ संयुक्त उद्यम संयंत्र स्थापित करने चाहिए, जिससे विदेश मंत्रालय, वित्त मंत्रालय और अन्य संबंधित विभागों/एजेंसियों के माध्यम से विदेशों में उर्वरकों के कच्चे माल के अधिग्रहण तक पहुंच सुनिश्चित हो सके। नैनो उर्वरकों के उत्पादन में किसी भी प्रकार की बाधा से बचने के लिए सरकार द्वारा सभी आवश्यक कदम उठाए जाने की आवश्यकता है। इससे उर्वरक क्षेत्र में आत्मनिर्भरता प्राप्त करने में मदद मिल सकती है, जबकि उचित दरों पर उर्वरकों और कच्चे माल की नियमित आपूर्ति सुनिश्चित हो सकती है और देश के आयात बोझ को कम करके कीमती विदेशी मुद्रा की बचत हो सकती है। इसके अलावा, विभाग उर्वरकों के कच्चे माल (अर्थात पी एंड के और अन्य मैक्रो और सूक्ष्म पोषक तत्वों) पर मूल सीमा शुल्क को तर्कसंगत बनाने/छूट देने के लिए वित्त मंत्रालय से संपर्क कर सकता है ताकि वे उचित मूल्य पर उपलब्ध हों और इस प्रकार नैनो उर्वरकों के उत्पादन को बढाने के लिए देश में नैनो प्रौद्योगिकी आधारित संयंत्रों की स्थापना को प्रोत्साहित किया जा सके।

8. सिमिति को यह समझाया गया है कि नैनो यूरिया का उपयोग किसानों की आय को दोगुना करने के लिए एक साधन के रूप में कार्य करेगा। इसमें उच्च पोषक तत्व उपयोग दक्षता है जो फसल उत्पादन को बढ़ावा देगी और किसानों की आय में वृद्धि करेगी। इफको द्वारा आईसीएआर-केवीके के सहयोग से 94 फसलों पर किए गए 11,000 अखिल भारतीय किसान फील्ड परीक्षणों के आधार पर, नैनो यूरिया के उपयोग के साथ औसतन 8% अधिक फसल उपज प्राप्त की गई, जो किसानों के लिए 2000-5000 रुपये प्रति हेक्टेयर उच्च आय में बदल जाती है। उच्च मूल्य/उच्च एमएसपी फसलों के मामले में आर्थिक लाभ और भी अधिक है। नैनो यूरिया के उपयोग से कम उर्वरक की खरीद के संदर्भ में किसानों के लिए इनपुट लागत बचत होती है। प्रति एकड़ औसतन 45-90 किलोग्राम कम सब्सिडी वाला यूरिया लगाया जाएगा, जो किसानों के लिए कम खरीद लागत के संदर्भ में किसानों के लिए 266-532 रुपये प्रति एकड़ लागत बचत है। फायदे के बावजूद, नैनो-उर्वरकों के व्यावहारिक कार्यान्वयन को अभी भी एक लंबा रास्ता तय करना है। सिमिति यह महसूस करती है कि किसी भी गेम चेंजर तकनीक के लिए सबसे

बड़ी चुनौती आम जनता द्वारा बड़े पैमाने पर इसे अपनाना है। इस मामले में, सबसे बड़ी चुनौती लघु और सीमांत किसानों द्वारा नैनो यूरिया को अपनाना है। उर्वरक विभाग नैनो यूरिया को बढ़ावा देने के लिए कई गतिविधियां कर रहा है जैसे प्रगतिशील किसानों के माध्यम से नैनो यूरिया अनुप्रयोग पर ग्राम स्तरीय प्रदर्शन, किसान सम्मेलनों में नैनो यूरिया के उपयोग के लिए जागरूकता पैदा करना। विभिन्न क्षेत्रीय भाषाओं में फिल्में भी बनाई गई हैं और नैनो यूरिया और किसानों के बीच इसके उपयोग के बारे में जानकारी के प्रसार के लिए सोशल मीडिया का बड़े पैमाने पर उपयोग किया जा रहा है। इसके अलावा रेडियो, डीडी किसान चैनल और अन्य टेलीविजन चैनलों पर नियमित बातचीत और पैनल चर्चा आयोजित की जा रही है। नैनो यूरिया की फसल विशिष्ट सही खुराक के लिए किसानों के लिए एक प्रशिक्षण मॉड्यूल विकसित किया जा रहा है। इसके अतिरिक्त, राज्य सरकारों से उनकी मासिक बैठकों में बार-बार अनुरोध किया जाता है कि वे किसानों के बीच नैनो यूरिया को लोकप्रिय बनाने की पहल करें। इफको ने फसल प्रदर्शनों, नैनो यूरिया की लघु वीडियो फिल्मों, प्रिंट और इलेक्ट्रॉनिक, मीडिया और मास मीडिया अभियानों, प्रचार सामग्री, उपहार और पुरस्कार, समर्पित इंटरनेट साइट, प्रशिक्षण और जागरूकता कार्यक्रमों और राज्यवार महत्वपूर्ण कार्यक्रमों और जनमत नेताओं, सरकारी अधिकारियों और वैज्ञानिकों आदि द्वारा समर्थन के माध्यम से देश भर में नैनो यूरिया के उपयोग के लिए संगठित प्रचार और विस्तार कार्यक्रम भी शुरू किए हैं।

नैनो यूरिया के उपयोग को बढ़ावा देने के लिए उर्वरक विभाग/इफको द्वारा किए जा रहे प्रयासों की सराहना करते हुए सिमति यह मानती है कि अभी भी इस दिशा में काफी काम किया जा सकता है। सिमति की राय है कि नैनो उर्वरकों के प्रचार कार्यक्रमों में फसल उत्पादन में वृद्धि और किसानों को आय संबंधी लाभ पर पर्याप्त ध्यान दिया जाना चाहिए। एक बार जब किसान इन लाभों के बारे में आश्वस्त हो जाए, तो वे उर्वरक विभाग और इफको द्वारा आयोजित विभिन्न प्रचार गतिविधियों के माध्यम से संबंधित जानकारी का उपयोग करने के लिए तैयार हो जाएंगे। हमारे देश के किसान जितनी तेजी से नैनो यूरिया को अपनाएंगे, उतनी ही तेजी से देश उर्वरक के क्षेत्र में संपूर्ण आत्मनिर्भरता की ओर बढ़ सकेगा।

9. सिमति नोट करती है कि एग्रीकल्चर स्प्रेयर एक विशेष प्रकार का कृषि उपकरण है जिसका उपयोग किसान खेतों में तरल या पाउडर युक्त कृषि रसायनों

और उर्वरकों को छिड़कने के लिए करता है। तरल नैनो यूरिया के छिड़काव के लिए, किसान 15 या 16 लीटर क्षमता वाले पानी की टंकी हाथ से संचालित या बैटरी से चलने वाले नैपसैक स्प्रेयर का उपयोग करते हैं। वे 200 लीटर या उससे अधिक क्षमता के पावर या मिस्ट स्प्रेयर/बूम स्प्रेयर का भी उपयोग करते हैं। मैनुअल स्प्रेयर, बैटरी से चलने वाले स्प्रेयर और पावर स्प्रेयर की लागत क्रमशः 1200-1500 रुपये, 3000-4500 रुपये और 6000-10,000 रुपये प्रति स्प्रेयर के बीच है। इस संबंध में, उर्वरक विभाग ने यह बताया है कि नैनो यूरिया के प्रभावी छिड़काव के लिए सहकारी समितियों, खुदरा विक्रेताओं के साथ-साथ ग्रामीण स्तर के युवाओं/एफपीओ द्वारा स्प्रेयरों को किराए पर लेने के लिए सामूहिक और सामुदायिक छिड़काव यंत्र का पता लगाया जा रहा है। समिति यह चाहती है कि विभाग किसानों को नैनो उर्वरकों के छिड़काव के प्रभावी और सस्ते साधन उपलब्ध कराने के अपने प्रयासों में तेजी लाए।

समिति यह नोट करती है कि डोन का उपयोग नैनो उर्वरकों के छिड़काव के लिए भी किया जाता है। डोन के साथ उर्वरक का छिड़काव या बीज की बुआई किसान को उन जगहों तक पहुंचाता है जहां पारंपरिक रूप से और तेज गति से पहुंचना मुश्किल होगा। जैसा कि नागर विमानन मंत्रालय द्वारा सूचित किया गया है, देश में ड्रोन के स्वदेशी उत्पादन का समर्थन करने के लिए ड्रोन के आयात पर प्रतिबंध लगा दिया गया है। सिमति इस संबंध में सरकार के निर्णय का पुरजोर समर्थन करती है और चाहती है कि ऐसी सुविधाओं को प्रोत्साहित किया जाए और इनको देश के भीतर ही स्थापित किया जाए। जैसा कि बताया गया है, सरकार अच्छी नीतियों के साथ आई है और प्रोत्साहन शुरू किया गया है एवं ड्रोन के लिए तीन विश्व प्रसिद्ध प्रकार के प्रमाणीकरण निकायों जैसे टाटा क्वालिटी, युएस का टीक्यूसी और ब्यूरो वेरिटास को शामिल किया है। इसलिए, मांगें पैदा करने के लिए चीजों को उदार बनाया गया है और नीतिगत और प्रक्रियात्मक बाधाओं को दूर किया गया है। सिमति आश्वस्त होना चाहेगी कि सरकार ने राज्यों और संघ राज्य क्षेत्रों द्वारा डोन अपनाने को प्रोत्साहित करने के लिए नीतिगत पहल की है और ड्रोन की खरीद प्रक्रिया को सरल बनाया गया है। इस बात को ध्यान में रखते हुए कि ड्रोन का उत्पादन अभी शुरू हुआ है और सरकार द्वारा की गई पहल के मद्देनजर, समिति को विश्वास है कि नागर विमानन मंत्रालय द्वारा प्रत्येक गांव के लिए 10 ड्रोन उपलब्ध कराने और देश के 6 लाख से अधिक गांवों की आवश्यकता को पूरा करने के लिए निर्धारित लक्ष्य को परिहार्य देरी का ध्यान रखते हुए उचित समय सीमा के भीतर पूरा किया जाएगा। सिमति चाहती है कि उर्वरक विभाग समय-समय पर इस मामले में अद्यतन जानकारी प्रदान करे।

- 11. सिमति इस बात की सराहना करती है कि कृषि एवं किसान कल्याण मंत्रालय ने कृषि मशीनरी के हिस्से के रूप में ड्रोन को शामिल किया है। हालांकि, इस तथ्य को ध्यान में रखते हुए कि 25 किलोग्राम के एक कृषि ड्रोन की लागत 8 से 10 लाख रुपये के बीच होती है, सिमति को छोटे और सीमांत किसानों, जो लगभग 86% हैं, के लिए इसे वहन करना बेहद मुश्किल लगता है। सिमति को पता है कि सरकार ने दिनांक 15.09.2021 को ड्रोन और ड्रोन घटकों के लिए उत्पादनबद्ध प्रोत्साहन (पीएलआई) योजना को मंजूरी दे दी है। पीएलआई योजना तीन वित्तीय वर्षों में ड्रोन और ड्रोन घटकों के लिए 120 करोड़ रुपये आवंटित करती है जो वर्ष 2020-21 के दौरान सभी घरेलू ड्रोन विनिर्माताओं के 60 करोड़ रुपये के संयुक्त कारोबार का लगभग दोगुना है। जैसा कि बताया गया है, ड्रोन के 120 विनिर्माताओं और लगभग 180-200 सेवा प्रदाताओं में से, 23 ड्रोन/घटक निर्माता जिनका टर्नओवर 2 करोड़ रुपये है, पीएलआई योजना के लिए पात्र पाए गए हैं। चूंकि ड्रोन और ड्रोन घटकों के लिए पीएलआई योजना मौजूद है, इसलिए समिति यह आशा करती है कि ड्रोन विनिर्माण उद्योग महत्वपूर्ण भूमिका निभाएगा और सरकार के प्रयासों को पूरा करेगा। दूसरे शब्दों में, जबकि उद्योग जगत यह आशा करता है कि सरकार अनुकूल विनिर्माण वातावरण बनाने के माध्यम से भरोसे पर आधारित सहायक रवैया प्रदर्शित करेगी, समिति यह आशा करती है कि उद्योग जगत घरेलू कृषि उपयोग के लिए ड्रोन विनिर्माण पर उल्लेखनीय रूप से निवेश करके अनुकरणीय फोकस प्रदर्शित करे और इस प्रकार अपेक्षित स्तर तक ड्रोन विनिर्माण उद्योग की वृद्धि सुनिश्चित करे।
- 12. सिमिति यह नोट करती है कि कृषि में नैनो उर्वरकों के छिड़काव के लिए इोन के उपयोग के लिए एसओपी उर्वरक विभाग के विचाराधीन है, जिसमें ड्रोन की लागत की 90% राशि कृषि अवसंरचना कोष (एआईएफ) के माध्यम से उन उद्यमियों को प्रदान की जाएगी जो ड्रोन की सुविधा का लाभ उठाना चाहते हैं। सिमिति यह चाहती है कि विभाग सभी संबंधित मंत्रालयों/विभागों और अन्य हितधारकों के साथ मिलकर किसान विकास केंद्रों, कस्टम हायर सेंटरों और कृषि विश्वविद्यालयों आदि को रियायती दरों पर ड्रोन के प्रावधान के लिए एआईएफ से

पर्याप्त बजटीय सहायता की मांग करे। सिमित यह चाहती है कि नैनो उर्वरकों के छिड़काव के लिए ड्रोन के उपयोग के लिए एसओपी को जल्द-से-जल्द अंतिम रूप दिया जाए। सिमित आगे यह चाहती है कि उर्वरक विभाग को फसलों की बढ़ी हुई और बेहतर उत्पादकता के लिए उर्वरक स्प्रेयर की उपलब्धता सुनिश्चित करने के लिए इसी तरह के उपाय करने चाहिए।

- 13. सिमिति को आगे सूचित किया जाता है कि उर्वरक विभाग ने ड्रोन द्वारा तरल उर्वरकों के छिड़काव हेतु उद्यमशीलता को विकसित करने के लिए दिशानिर्देश भी जारी किए हैं और वे उक्त दिशानिर्देशों के प्रचार के लिए हितधारकों के साथ नियमित संपर्क में हैं, जिससे सस्ती लागत पर उर्वरकों के छिड़काव के लिए ड्रोन की उपलब्धता सुनिश्चित होगी। सिमिति यह चाहेगी कि ड्रोन द्वारा तरल उर्वरकों के छिड़काव के लिए उद्यमशीलता को विकसित करने हेतु दिशा-निर्देशों का कड़ाई से पालन किया जाए ताकि सस्ती लागत पर ड्रोन की उपलब्धता सुनिश्चित करने के उनके उद्देश्य को पूरा किया जा सके।
- 14. यह जानकर संतोष होता है कि एक ड्रोन एक एकड़ खेत में छिड़काव पूरा करने में केवल 5 मिनट का समय लेता है और एक दिन में 80 एकड खेत में छिड़काव करता है जबकि एक मैनुअल स्प्रेयर एक एकड़ खेत में छिड़काव करने के लिए पूरा एक दिन लेता है। हालाँकि, सिमति यह जानकर प्रसन्न नहीं है कि डोन से स्प्रे के लिए तरल उर्वरकों के छिडकाव के लिए उद्यमशीलता को विकसित करने के दिशा-निर्देशों के अनुसार निर्धारित दर 200 रुपये प्रति एकड़ प्रति दिन है, लेकिन इसके परिवहन शुल्क सहित खेत तक किसानों से अधिक शुल्क यानि 500/- रुपये प्रति एकड प्रति दिन लिया जा रहा है। इसलिए, हालांकि नैनो उर्वरकों के कई लाभ हैं, ड्रोन स्प्रे प्रयोग की उच्च लागत के संबंध में किसानों की चिंता पर ध्यान नहीं दिया गया है। तिमलनाडु कृषि विश्वविद्यालय (टीएनएयू) के प्रतिनिधि ने समिति की चिंता पर प्रतिक्रिया व्यक्त की और यह बताया कि खेत तक ड़ोन के परिवहन शुल्क में सब्सिडी दी जा सकती है। समिति इस बात से आश्वस्त होना चाहती है कि विभाग ड्रोन स्प्रे की दरों के संबंध में विसंगतियों को दूर करने के लिए सभी आवश्यक कदम उठाए और इस संबंध में किसानों की चिंताओं को दूर करे ताकि अधिक से अधिक किसान उर्वरकों के छिड़काव के लिए ड्रोन की सुविधा का लाभ उठा सकें।

- 15. सिमिति यह आशा करती है कि जैसा कि आश्वासन दिया गया है, उर्वरक विभाग कंपनियों/कॉर्पोरेट घरानों के साथ उनके कॉर्पोरेट सामाजिक दायित्व (सीएसआर) निधि का उपयोग करने के लिए विशेष चिह्नित क्षेत्र (उनके द्वारा अपनाया गया) के किसानों को नैनो यूरिया के छिड़काव के लिए रियायती दरों पर/नि:शुल्क ड्रोन की सुविधा प्रदान करने के लिए और स्थानीय ग्रामीण उद्यमियों और किसानों को ड्रोन पायलट प्रशिक्षण देने के लिए मामला उठाएगा।
- 16. तमिलनाडु कृषि विश्वविद्यालय (टीएनएयू) के प्रतिनिधि ने सूचित किया है कि उनके पास 40 अनुसंधान केंद्र, 18 कॉलेज और 14 केवीके हैं और उनकी सभी इकाइयों में उनके पास ड्रोन है। वे कस्टम हायरिंग देने का भी प्रस्ताव रखते हैं और उसके लिए उनके पास पूरी एसओपी है। साथ ही, ड्रोन संचालन के लिए जनशक्ति में सुधार करने के लिए, तिमलनाडु सरकार ने कृषि इंजीनियरिंग में डिप्लोमा पाठ्यक्रम में ड्रोन प्रशिक्षण को शामिल करने के लिए विशेष पहल की है। यह 10 घंटे का पाठ्यक्रम है और दो सप्ताह के भीतर प्रशिक्षित होकर ड्रोन चलाने का लाइसेंस मिल जाता है। तमिलनाडु राज्य विधानसभा ने 60 ड्रोन खरीदने के लिए 11 करोड़ रुपये की परियोजना को मंजूरी दी है। टीएनएयू में एक प्रयोगशाला है जहां उड़ान की ऊंचाई, स्वैथ, ड्रोन की गति के कई मापदंडों का आकलन किया जाता है। तमिलनाडु सरकार ने भी टीएनएयू से बेरोजगार युवाओं को डोन के इस्तेमाल के लिए प्रशिक्षित करने का अनुरोध किया है और इसके लिए प्रयास किए जा रहे हैं। साथ ही, कई कंपनियां ड्रोन तकनीक को बढ़ावा देने के लिए समझौता ज्ञापन पर हस्ताक्षर करने के लिए तैयार हैं। समिति कृषि जरूरतों और ड़ोन प्रौद्योगिकी को बढ़ावा देने के लिए ड़ोन के उपयोग में तमिलनाड़ राज्य सरकार/टीएनएयू द्वारा की गई पहल का स्वागत करती है। समिति उर्वरकों/नैनो उर्वरकों के छिड़काव में ड्रोन के उपयोग के लिए किसानों की आवश्यकता को पूरा करने के लिए अन्य राज्य सरकारों के साथ मिलकर उर्वरक विभाग से सिफारिश करती है।
- 17. सिमित ने यह पाती है कि ड्रोन प्रशिक्षण केंद्रों की संख्या सीमित है जिससे किसानों के लिए प्रशिक्षण सुविधा का लाभ उठाना मुश्किल हो जाता है। नागर विमानन मंत्रालय के अनुसार, उन्होंने देश के 800 जिलों के लिए प्रति जिले औसतन 10 स्कूलों के साथ 8000 ड्रोन प्रशिक्षण स्कूलों की योजना बनाई है। हालाँकि, इसमें अनुमोदन की कुछ प्रक्रिया शामिल है। सिमित यह चाहती है कि उर्वरक विभाग को कृषि और किसान कल्याण मंत्रालय, नागरिक उड्डयन मंत्रालय, कृषि विज्ञान केंद्रों, किसान विकास केंद्रों, किसान उत्पादक संगठनों (एफपीओ), कस्टम हायर सेन्टर, किसान सहकारी सिमितियों, कृषि

विश्वविद्यालयों, उर्वरक निर्माण कंपनियों आदि के समन्वय से देश भर में उद्यमियों और किसानों को फसलों पर नैनो उर्वरकों आदि की सही मात्रा के सटीक और लिक्षित अनुप्रयोग के लिए ड्रोन शामिल करते हुए विभिन्न प्रकार के उर्वरक स्प्रेयरों के उचित उपयोग के बारे में प्रशिक्षित करने के लिए नियमित प्रशिक्षण कार्यक्रम आयोजित करने हेतु एक निश्चित योजना तैयार करे।

- 18. सिमिति यह नोट करती है कि भारत सरकार द्वारा कृषि यंत्रीकरण उपमिशन (एसएमएएम) शुरू किया गया है। पात्र किसान योजना के लिए प्रयोग कर
 सकते हैं और 50 से 80% सब्सिडी के साथ आधुनिक कृषि उपकरण खरीद सकते
 हैं। इसलिए, यह योजना राज्य सरकारों के सिक्रय सहयोग से गांवों में ड्रोन की
 उपलब्धता को सुगम बनाएगी। नागर विमानन मंत्रालय के प्रतिनिधि ने साक्ष्य के
 दौरान स्वीकार किया कि एसएमएएम योजना का कार्यान्वयन थोड़ा धीमा है।
 सिमिति सिफारिश करती है कि उर्वरक विभाग को एसएमएएम के प्रभावी
 कार्यान्वयन के लिए नागर विमानन मंत्रालय और राज्य सरकारों और अन्य संबंधित
 एजेंसियों के साथ मिलकर काम करना चाहिए ताकि पूरे देश में ब्लॉक/गांव स्तर
 पर किसानों को ड्रोन की उपलब्धता को सुविधाजनक बनाने के अपने उद्देश्य को
 प्राप्त किया जा सके।
- 19. सिमिति कृषि अनुसंधान और शिक्षा विभाग (डीएआरई) की प्रस्तुति से यह पाती है कि विभिन्न फसलों की पोषण गुणवत्ता पर नैनो उर्वरकों के दीर्घकालिक प्रभावों का पता नहीं लगाया जा सकता है क्योंकि अभी तक किए जा रहे अनुसंधान परीक्षण केवल एक वर्ष और अधिकांश मामले में, केवल एक मौसम ही पूरे हुए हैं। सिमिति सिफारिश करती है कि उर्वरक विभाग द्वारा डीएआरई/आईसीएआर, सभी कृषि विश्वविद्यालयों/उर्वरक निर्माण कंपनियों आदि के साथ सिक्रय समन्वय से देश के सभी जलवायु क्षेत्र और सभी प्रकार की मिट्टी के सभी प्रमुख फसलों को शामिल करते हुए ठोस दीर्घकालिक समर्पित अनुसंधान आयोजित किया जाए ताकि नैनो उर्वरकों के उपयोग के गुणों और अवगुणों का पूरी तरह से आकलन किया जा सके और नैनो उर्वरकों से उपजने वाली फसलों की पोषण गुणवत्ता, जैव-सुरक्षा, प्रभावकारिता और विश्वसनीयता स्थापित की जा सके।

20. सिमिति को यह पता चला है कि नैनो यूरिया के प्रयोग से फसलों की किस्मों पर फील्ड परीक्षण के दौरान यह पाया गया कि टॉप ड्रेस नाइट्रोजन में 25 से 50 प्रतिशत की बचत हुई। सिमिति चाहती है कि विभिन्न फसलों और विभिन्न क्षेत्रों में प्रमुख कृषि अनुसंधान संस्थानों आदि द्वारा टॉप ड्रेस नाइट्रोजन की बचत में भारी भिन्नता (25 से 50 प्रतिशत) के कारणों का आकलन करने के लिए अन्य मंत्रालयों/संगठनों के समन्वय से विभाग द्वारा नैनो उर्वरकों के प्रयोग पर क्षेत्र परीक्षणों की गहन लेखापरीक्षा कराई जाए; भिन्नता और प्रभावों के कारणों का वैज्ञानिक रूप से विश्लेषण किया जाए और नैनो यूरिया के उपयुक्त अनुप्रयोग के लिए फसल विशिष्ट मानक संचालन प्रक्रिया (एसओपी) तैयार की जाए ताकि इस संबंध में भिन्नता की सीमा को कम/हटाया जा सके।

21. सिमित आगे यह चाहती है कि जैसा कि आश्वासन दिया गया है, उर्वरक विभाग कृषि एवं किसान कल्याण विभाग के साथ गुणवत्ता वाले नैनो उर्वरकों का उत्पादन और बिक्री सुनिश्चित करने के लिए पूरे देश में गुणवत्ता परीक्षण प्रयोगशालाओं की स्थापना के मामले को उठाएगा। सिमित इस मामले में हुई प्रगति से अवगत रहना चाहेगी।

नई दिल्ली; <u>20 मार्च, 2023</u> 29 फाल्गुन, 1944 (शक) डॉ. शशि थरूर सभापति, रसायन और उर्वरक संबंधी स्थायी समिति

अनुबंध एक

खरीफ 2021 में नैनो यूरिया (तरल) के अखिल भारतीय प्रायोगिक परिणामों का सारांश

क्र.सं.	फसल	स्थान	मौसम	उपचार	किलो में	टॉप ड्रेस्ड यूरिया की मात्रा प्रति प्लॉट	<u>टॉप</u>	नैनो उपयोग की लागत लगभग (बोतल + पर्ण श्रम)	राजसहायता प्राप्त यूरिया लागत (266.50 रूपये प्रति बैग की दर से)	(यूरिया लागत +	<u>प्लॉट में</u> <u>अतिरि</u> क्त <u>लागत</u>	उपज *	का मंडी मूल्य	तुलना में	<u>आर</u> <u>डीए</u> फ़ की तुलना मे *	<u>प्रतिफल</u>	<u>समग्र</u> <u>आर्थिक लाभ</u>	<u>नाइट्रोजन र</u> की व	<u>ॉप ड्रेस्ड</u> में नाइट्र <u>ोजन</u> बचत
						किग्रा/हे	रू/हे	रू/हे	रू/हे	रू	रू/हे	किग्रा ⁄हे	रू/कि ग्रा	किग्रा	op	रू/हे	रू/हे	किग्रा	8
क	ख	ग	घ	ङ	ਹ	ন্ত	ज	झ	의 (향 x 266.5)/4 5	ट (ज+झ+ ञ)	ਠ	ড		ण (ड-ड आरडीएफ)		थ (ण×ढ)	द (थ-ठ)	ध (च आरडीएफ – च नैनो)	न
1	चावल	बीसीकेवी, मोहनपुर (पश्चिम बंगाल)	खरीफ, 2021	100% आरडीएफ (60: 30: 30 किग्रा/हेक्टेयर एनपीके)	60	130	800	0	772	1572		378 6	19					-	-

				20 डीएटी + 1 नैनो यूरिया (तरल) स्प्रे पर कुल टॉप ड्रेसिंग यूरिया का 50% बेसल एन, पी, के + 50% 27 डीएटी + दूसरा नैनो यूरिया (तरल) स्प्रे 40-45 डीएटी पर	30	65	800	3168	386	4354	2776	420	19	422	11.	8018	5242	30	50
2	चावल (सीआईए आरआई धान –3)	भाकृअनुप – सियारी, पोर्ट ब्लेयर	खरीफ 2021	आरडीएन ((90 किग्राएन/हे)	90	196	1521	0	1159	2680	-	359	19.5						
				एटी और पीआई पर 4 मिलिलीटर /लीटर की दर से 66% एन और नैनो एन के 2 स्प्रे के साथ आरडीएफ	66.5	145	507	1614	856	2977	249	411	19.5	517	14.	.5	9832.5	24	33
3	मक्का (हाइब्रिड डीएचएम ¹¹⁷⁾	भाकृअनुप – सीआरआईडीए, हैदराबाद (तेलंगाना)	खरीफ 2021	आरडीएन (90 किग्रा एन/हे)	90	196	800	0	1159	1959	-	269	18.7						
				25% एन कमी के साथ आरडीएफ और 25 और 45 डीएएस पर 2 मिलिलीटर / लीटर की दर से नैनो एन के 2 स्प्रे	67.5	147	800	1760	869	3429	1470	280	18.7	107	3.9	2000.	530.9	23	25

	फिंगर मिलेट (जीपीयू 28)	एआईसीआरपीडीए केंद्र, बेंगलुरु (कर्नाटक)	खरीफ 2021	आरडीएन (50 किलोग्राम एन/हे)	50	109	400	0	644	1044	-	274	32						
				25% एन कमी के साथ आरडीएफ और 25 और 45 डीएएस पर 2 मिलिलीटर / लीटर की दर से नैनो एन के 2 स्प्रे	37.5	82	400	1760	483	2643	1589	303	32	296	10.	9472	7883	13	25
	अपलैंड चावल (दंतेश्वरी)	एआईसीआरपीडीए केंद्र, जगदलपुर (छत्तीसगढ़)	खरीफ 2021	आरडीएन (80 किग्रा एन/हे)	80	174	800	0	1030	1830	-	289 7	19.6						
				25% एन कमी के साथ आरडीएफ और 35 और 55 डीएएस पर 2 मिलिलीटर / लीटर की दर से नैनो एन के 2 स्प्रे	60	130	800	1760	772	3332	1500	297	19.6	74	2.5	1450.	-49.6	20	25
4	धान बासमती पीबी- 1121	सीएसएसआरआई करनाल (हरियाणा)	खरीफ 2021	आरडीएफ (90 किग्रा एन किग्रा /हे)	90	196	1200	0	1159	2359	1	446	33						
				33% एन कमी और नैनो एन के 1 स्प्रे के साथ आरडीएफ	60	130	800	1000	772	2572	215	452 5	33	59	1.3	1947	1732	30	33
5	अदरक (वरदा)	भाकृअनुप – आईआईएसआर, कोझीकोड (केरल)	2021-22	आरडीएन (180 किग्रा एन/हे)	120	261	2000	0	1545	3545	-	140	12						

				50% एन की कमी के साथ आरडीएफ और 90 रुपये प्रति बोतल की दर से 2 मिलिलीटर /लीटर और 120 डीएपी (800 मिलिलीटर /हेक्टेयर) की दर से नैनो एन के 2 स्प्रे	60	130	500	2400	772	3672	1130	220	12	8000	57. 14	96000	94870	60	50
				50% एन की कमी के साथ आरडीएफ और 90 रुपये प्रति बोतल पर 4 मिलिलीटर /लीटर की दर से नैनो एन के 2 स्प्रे और 250 रुपये प्रति बोतल की दर से 120 डीएपी (1.6 एल /हेक्टेयर)	60	130	500	2800	772	4072	1530	274 40	12	13440	96.	16128	159750	60	50
6	चावल (सिंचित)	आईआरआरआई- एसएआरसी, वाराणसी (उ.प्र.)	खरीफ 2021	आरडीएन (120 किग्रा/ हे)	120	261	800	0	1545	2345	-	760 0	19.4						
	(एमटीयू 7029)			34% एन कमी के साथ आरडीएन और पीआई में 4 मिलिलीटर /लीटर की दर से नैनो यूरिया (तरल) का 1 स्प्रे	79	172	400	1120	1017	2537	195	790	19.4	300	3.9 5	5820	5625	41	34
7	चावल (वर्षा आधारित)	आईआरआरआई- एसएआरसी, वाराणसी (उ.प्र.)	खरीफ 2021	आरडीएन (80 किग्रा/हे)	80	174	800	0	1030	1830	-	440	19.4						

	(बीनाधा न 11)			34% एन की कमी के साथ आरडीएन और एमटी और पीआई पर 2 मिलिलीटर /लीटर की दर से नैनो यूरिया (तरल) का 2 स्प्रे	52.8	115	400	1520	680	2600	770	490	19.4	500	11. 36	9700	8930	27	34
8	चावल (वर्षा आधारित)	आईआरआरआई- एसएआरसी, जोरहाट (असम)	खरीफ 2021	आरडीएन (60 किग्रा/हे)	60	130	800	0	772	1572	-	400	19.4						
	(सीआर धान ³¹¹⁾			34% एन की कमी के साथ आरडीएन और एमटी और पीआई स्तर पर 2 मिलिलीटर / लीटर की दर से नैनो यूरिया (तरल) का 2 स्प्रे	39.6	86	400	1520	510	2430	858	440	19.4	400	10.	7760	6902	20	34
9	धान	अंडुआत, कुमारगंज, अयोध्या (उ.प्र.)	खरीफ 2021	आरडीएन 150/किग्रा एन/हे	150	326	400	0	1931	2331	0	60. 5	1940	-	-	1	-	-	-
	,,	,,	"	आरडीएफ 50% एन + 2 नैनो जिंक स्प्रे	75	163	400	1200	966	2566	1200	65	1940	4.5	7.4	8730	7530	75	50
10	चावल (पूजा)	भाकृअनुप- एनआरआरआई, कटक (ओडिशा)	खरीफ 2021	आरडीएन (८०किग्रा एन/हे)	80	174	800	0	1030	1830		460	19.4						
				रोपाई के 78 दिनों के बाद आरडीएन का 75% और नैनो एन का एक स्प्रे 2 मिलिलीटर/लीटर की दर से (डीएटी)	60	130	400	1100	772	2272	443	420	19.4	-400	- 8.7 0	-7760	-8203	20	25

			रोपाई के 48 और 78 दिनों के बाद आरडीएन का 50% और नैनो एन का दो स्प्रे 2 मिलिलीटर/लीटर की दर से	40	87	0	2200	515	2715	885	380	19.4	-800	- 17. 39	- 15520	-16405	40	50
11	बाजरा एसकेएनएयू (आरएच जोबनेर (राजस्थ बी 173)	खरीफ Iन) 2021	आरडीएन (120 किग्रा एन/हे)	90	196	375	0	1159	1534	-	284	22.5						
			25% एन कमी के साथ आरडीएफ और 30 और 45 डीएएस पर 2 मिलिलीटर / लीटर की दर से नैनो एन के 2 स्प्रे		147	281	1768	869	2918	1385	304	22.5	198	6. 5 5	4455	3070.42	23	25
			50% एन कमी के साथ आरडीएफ और 30 और 45 डीएएस पर 2 मिलिलीटर / लीटर की दर से नैनो एन के 2 स्प्रे		98	188	1768	579	2535	1001	298	22.5	131	4.3	2947.	1946.35	45	50
12	मक्का यूएएस जीकेवी (बीआरए बैंगलोर (कर्नाट मएच 8)		आरडीएन ((150 किग्रा एन/हे)	0.3	1	800	0	4	804	-	826	14.2						

				50% एन की कमी के साथ आरडीएफ और 30 और 60 डीएएस पर 4 मिलिलीटर / लीटर की दर से नैनो एन के 2 स्प्रे	0.15	0	600	1944	2	2546	778	844	14.2	180	2.1	2556	1778	0	50
	चावल (केएमपी 220)	यूएएस जीकेवीके, बैंगलोर (कर्नाटक)	खरीफ 2021	आरडीएन ((100 किग्रा एन/हे)	0.12	0	800	0	2	802	-	524 0	17						
				50% एन की कमी के साथ आरडीएफ और 30 और 60 डीएएस पर 4 मिलिलीटर / लीटर की दर से नैनो एन के 2 स्प्रे	0.06	0	600	1944	1	2545	1103	534	17	100	1.9	1700	597	0	50
13	रागी (वीएल मंडुआ 352)	भाकृअनुप- वीपीकेएएस, अल्मोड़ा (उत्तराखंड)	खरीफ 2021	100% आरडीएन	50	109	1200	0	644	1844	ı	140	33.77						
				50% आरडीएन +2 spray of Nano Urea (liquid) @ 0.2%	25	54	800	1400	322	2522	675	123 5	33.77	-172	- 12. 22	- 5808. 4	-6483.4	25	50
14	चावल	आईजीकेवी, रायपुर (छत्तीसगढ़)	खरीफ 2021	आरडीएन (120 किग्रा एन/हे)	120	261	900	0	1545	2445		601 7	19.4						

				50% एन की कमी और 2 स्प्रे के साथ आरडीएन तिल्ली में 4 मिलिलीटर / लीटर N@ फूलों के चरण से पहले	60	130	600	2040	772	3412	968.	551	19.4	-504	- 8.3 8	9777. 6	-10747	60	50
15	मक्का (कोमल संकर)	आरवीएसकेवीवी, इंदौर (म.प्र.)	खरीफ 2021	आरडीएफ (120- 60-40)	120	261	600	0	1545	600	ı	261	18.7	-	-	ı	-	-	-
				60 किग्रा एन + 2- एनयू के स्प्रे	60	130	300	1800	772	2872	727. 5	274 5	18.7	131	5.0	2449.	1722.2	60	50
16	मक्का (जीएवाई एमएच 1)	एएयू, आणंद (गुजरात)	खरीफ 2021	आरडीएफ (120:60:0 एनपीके किग्रा/हे)	120	261	800	0	1545	2345	-	491	18.7						
				50% एन कमी और नैनो एन के 2 स्प्रे के साथ आरडीएफ	60	130	400	2000	772	3172	828	497	19.25	60	1.2	1122	294	60	50
17	धान	टीएनएयू, भवानीसागर (तमिलनाडु)	खरीफ 2021	आरडीएफ (120:60:0 एनपीके किग्रा/हे)	120	261	800	0	1545	2345	-	603	19.4						
				50% एन कमी और नैनो एन के 2 स्प्रे के साथ आरडीएफ	60	130	400	3200	772	4372	2028	697 0	19.4	940	15. 6	18236	16208	60	50

अनुबंध दो नैनो यूरिया (तरल) (नैनो नाइट्रोजन) पर मौसम-वार/फसल-वार किए गए प्रायोगिक परीक्षण

प्रयोग	मौसम	फसल एवं परीक्षण (संख्या)
	रबी 2019-20 (24 सं.)	<mark>अनाज</mark> : गेहूं (11); तिलहन: सरसों (1); सब्जियां: प्याज (2); शिमला मिर्च (1), गोभी (1), टमाटर (3); पॉलीहाउस के तहत पार्थेनोकार्पिक ककड़ी (1) चीनी फसल: सुरु (Suru) गन्ना (1)
	सं.)	अनाज: धान (1); मक्का (2)
" स्टेशन पर " परीक्षण	<i>खरीफ 2020</i> (16 सं.)	<mark>अनाज</mark> : धान (6) ; मक्का (5) ; बाजरा (3) फाइबर : कपास (1) <mark>सब्जियां</mark> : ओकरा (1)
	रबी 2020-21 (8 सं.)	<mark>अनाज</mark> : गेहूं (6) ; तिलहन : सरसों (1) ; सब्जियां : प्याज (1)
	सं.)	अनाज : धान (1) ; मक्का (1)
	<i>खरीफ 2021</i> (21 सं.)	तालिका 2 देखें।
	रबी 2019-20	93 फसल; 11224 परीक्षण (9037 दर्ज किया हुआ)
_" खेत पर" परीक्षण	खरीफ 2020	44 फसल; 1511 परीक्षण (1435 दर्ज किया हुआ)
	रबी 2020-21	1126
	कुल	11,598

डीबीटी नैनो दिशानिर्देशों के अनुसार इफको नैनो यूरिया (तरल) का सुरक्षा आंकलन

क्रम.	परीक्षण का नाम	दिशानिर्देश	उद्देश्य
सं.			
1	त्वचा संबंधी	ओईसीडी टीजी 404 और	मानव सुरक्षा
	विषाक्तता-त्वचा के	डीबीटी	
	क्षरण और जलन के		
	लिए आईएटीए		
2	त्वचा अवशोषण	ओईसीडी टीजी 428 और	मानव सुरक्षा
	अध्ययन	डीबीटी	
3	नेत्र जलन जांच	ओईसीडी टीजी 437 और	मानव सुरक्षा
		डीबीटी	
4	नैनो कणों का अंत:	ओईसीडी टीजी 433 और	मानव सुरक्षा
	श्वसन विषाक्तता	डीबीटी	
	अध्ययन		
5	जीनोटॉक्सिसिटी	ओईसीडी टीजी 473 और	मानव और पादप सुरक्षा
	अध्ययन	डीबीटी	
6	साइ्टोटोक्सिसिटी	एमटीटी एवं न्यूट्रल रेड एससे	मानव सुरक्षा
	अध्ययन	और डीबीटी	
7	ताजा जल शैवाल में	ओईसीडी टीजी 201 और	जलीय/पर्यावरण
	निषेध परीक्षण	डीबीटी	विषाक्तता
8	डैफ़निया में	ओईसीडी टीजी 202 और	जलीय/पर्यावरण
	स्थिरीकरण	डीबीटी	विषाक्तता
	परीक्षण		
9	उष्णकटिबंधीय	ओईसीडी टीजी 203 और	जलीय/पर्यावरण
	मछली में	डीबीटी	विषाक्तता
	विषाक्तता		

10	मछली भ्रूण	ओईसीडी टीजी 236 और	पारिस्थितिक / पर्यावरण
	विषाक्तता अध्ययन	डीबीटी	विषाक्तता
11	केंचुआ प्रजनन	ओईसीडी टीजी 222 और	पारिस्थितिक / पर्यावरण
	अध्ययन	डीबीटी	विषाक्तता
12	नैनोमटेरियल्स का	ओईसीडी टीजी 318 और	एक्वा/मानव/पर्यावरण
	स्थिरता परीक्षण	डीबीटी	सुरक्षा
13	मृदा-जल	ओईसीडी 312 और	पर्यावरणीय सुरक्षा
	निक्षालन-मृदा पर	डीबीटी	
	स्प्रे		
14	मृदा-जल	ओईसीडी 312 और डीबीटी	पर्यावरणीय सुरक्षा
	निक्षालन-पौधों पर		
	स्प्रे		
15	पैकेजिंग संगतता	,	पर्यावरणीय और मानव
	परीक्षण	ईएनवी/जेएम/एमओएनओ	सुरक्षा
		(2019) 12 और डीबीटी	
16	रोगाणुओं पर	•	राइजोस्फीयर अध्ययन
	विषाक्तता	डीबीटी	_
17	चूहों और कुक्कुट		खाद्य विषाक्तता
	पर विषाक्तता	डीबीटी	
18	माइक्रोबियल	एफसीओ 1985 और डीबीटी	संदूषण से सुरक्षा
	संदूषण अध्ययन		_
19	नाइट्रोजन का	डीबीटी	स्थिरता
	एनएमआर		
	विश्लेषण	0.00	
20	प्लांट अपटेक	डीबीटी	स्थिरता और ट्रॉफिक
	अध्ययन		अंतरण
21	पोषण संबंधी	एफएसएसएआई	पोषण मूल्य और मानव
	विश्लेषण		सुरक्षा

रसायन और उर्वरक संबंधी स्थायी समिति

(2021-22)

समिति की सातवीं बैठक का कार्यवाही सारांश

समिति की बैठक सोमवार, 18 अप्रैल, 2022 को 1100 बजे से 1400 बजे तक समिति कक्ष 'बी', संसदीय सौध, नई दिल्ली में हुई।

उपस्थित श्रीमती कनिमोझी करुणानिधि - सभापति सदस्य

लोक सभा

- 2. श्री दिव्येन्द्र अधिकारी
- 3. श्री रमाकान्त भार्गव
- 4. श्री कृपानाथ मल्लाह
- श्रीमती अपरूपा पोद्दार
- 6. डा. एम.के.विष्णु प्रसाद
- 7. श्री अरुण कुमार सागर

राज्य सभा

- 8. श्री अयोध्या रामी रेड्डी आला
- 9. श्री जी.सी.चन्द्रशेखर
- 10. डा. अनिल जैन
- 11. श्री जयप्रकाश निषाद
- 12. श्री अरुण सिंह

सचिवालय

- 1. श्री विनोद कुमार त्रिपाठी- संयुक्त सचिव
- श्री सी. कल्याणसुन्दरम अपर निदेशक
- 3. श्री कुलविन्दर सिंह उप सचिव
- 4. श्री पन्ना लाल अवर सचिव

साक्षी

रसायन एवम् उर्वरक मंत्रालय (उर्वरक विभाग)

1. श्री राजेश कुमार चतुर्वेदी, सचिव (वित्त)

- 2. श्री सत्येन्द्र सिंह, अपर सचिव और वित्तीय सलाहकार
- 3. श्रीमती अपर्णा शर्मा, संयुक्त सचिव
- 4. श्रीमती नीरजा अदिदम, संयुक्त सचिव
- 5. डा. प्रतिभा ए., आर्थिक सलाहकार
- 6. श्री हरविन्दर सिंह, निदेशक

सरकारी उपक्रम/स्वायत्तशासी संस्थाएं

- 7. श्री यू.एस. अवस्थी, प्रबंध निदेशक, इफको
- 8. श्री योगेन्द्र कुमार, निदेशक (विपणन), इफको
- 9. श्री एस.सी. मुडगेरीकर, सीएमडी, आरसीएफ
- 10. श्री निरलेप सिंह राय, सीएमडी, एनएफएल
- 11. श्री पी एस गहलोत, प्रबंध निदेशक, आईपीएल

अन्य विभाग / मंत्रालय

- 12. श्री प्रिय रंजन, संयुक्त सचिव (आईएनएम), डीए एंड एफडब्ल्यू
- 13. श्री ए.के. सिंह, कृषि आयुक्त, डीए एंड एफडब्ल्यू
- 14. श्री एस के चौधरी, उप महानिदेशक, आईसीएआर

<u>भाग – ।</u>

2. प्रारंभ में माननीय अध्यक्ष ने समिति के सदस्यों का बैठक में स्वागत किया और फिर सिमिति ने अहमदाबाद, पुणे और कश्मीर में सिमिति के अध्ययन दौरे के संबंध में प्रस्ताव पर चर्चा की। यह प्रस्ताव किया गया कि उक्त अध्ययन दौरे के ब्योरे पर सिमिति द्वारा अपनी अगली बैठक में अनुमोदन के लिए विचार किया जाए।

<u>भाग – ॥</u>

रसायन एवम् उर्वरक मंत्रालय (उर्वरक विभाग) के प्रतिनिधियों द्वारा 'सतत फसल उत्पादन और मृदा 'स्वास्थ्य को बनाए रखने के लिए नैनो उर्वरक' पर ब्रीफिंग।

3. तत्पश्चात्, माननीय सभापति ने रसायन एवम् उर्वरक मंत्रालय (उर्वरक विभाग) के प्रतिनिधियों का बैठक में स्वागत किया। उनका ध्यान सिमति की कार्यवाहियों की गोपनीयता के संबंध में 'अध्यक्ष के निदेश' के निदेश 55(1) में निहित प्रावधानों की ओर आकर्षित किया गया।

- 4. साक्षियों द्वारा अपना परिचय देने के बाद सिमिति के सदस्यों की जानकारी के लिए "नैनो उर्वरकों" की विशेषताओं को प्रदर्शित करने वाली एक लघु फिल्म दिखाई गई। फिर विभाग के सिचव ने 'नैनो उर्वरकों' पर पावर प्वाइंट प्रेजेंटेशन के माध्यम से सिमिति को जानकारी दी।
- 5. पावर प्वाइंट प्रेजेंटेशन के बाद इस विषय 'टिकाऊ फसल उत्पादन और मृदा स्वास्थ्य को बनाए रखने के लिए नैनो-उर्वरक' के कई पहलुओं पर चर्चा की गई। चर्चा के दौरान, माननीय सभापित और सिमिति के सदस्यों ने कई मुद्दों पर प्रश्न उठाए जैसे:-
 - (i) विभिन्न फसलों, मृदा, मानव स्वास्थ्य आदि की पोषण गुणवत्ता पर नैनो उर्वरकों के उपयोग के दीर्घकालिक प्रभावों पर अनुसंधान।
 - (ii) किसानों के लिए जागरूकता कार्यक्रम और उन्हें नैनो उर्वरकों के उपयोग के बारे में प्रशिक्षण प्रदान करना।
 - (iii) नैनो उर्वरकों के कुशल छिड़काव के लिए ड्रोन प्रौद्योगिकी को बढ़ावा देना और इसके उपयोग के लिए किसानों को प्रशिक्षण देना।
 - (iv) नैनो उर्वरकों की बोतलों और उन पर एहतियाती चेतावनियों पर समाप्ति तिथि, यदि कोई हो, का प्रदर्शन।
 - (v) नैनो उर्वरक पैकिंग के लिए पुनर्नवीनीकरण योग्य प्लास्टिक की बोतलों का उपयोग।
 - (vi) देश के विभिन्न क्षेत्रों में नैनो उर्वरकों की वर्तमान उत्पादन क्षमता के अनुसार चरणबद्ध तरीके से चयनात्मक आवश्यकता आधारित शुरुआत और उपयोग।
 - (vii) नैनो उर्वरकों की उत्पादन क्षमता बढ़ाने के लिए प्रयासों की आवश्यकता।
 - (viii) हिन्दुस्तान फर्टिलाइजर्स कारपोरेशन के पश्चिम बंगाल में हिन्दिया संयंत्र का पुनरुद्धार।
 - (ix) नैनो उर्वरकों के संवर्धन और उपयोग के लिए अलग से बजटीय आबंटन का नियतन। नैनो उर्वरकों के उपयोग के लिए राजसहायता पर विचार।
 - (x) नैनो उर्वरकों के विभिन्न संस्करणों अर्थात् नैनो-डीएपी, जस्ता, बोरोन, तांबा आदि के अनुसंधान और विकास की आवश्यकता।
 - (xi) उर्वरकों में आत्मनिर्भरता प्राप्त करने के लिए निजी क्षेत्र की कंपनियों को भी शामिल करके सतत मॉडलों की आवश्यकता है ताकि इसके आयात को कम किया जा सके।

- (xii) नैनो उर्वरकों में और अधिक अनुसंधान की आवश्यकता है ताकि निर्यात मानकों को पूरा करने के लिए सभी पहलुओं में गुणवत्ता मानकों को बढ़ाया जा सके।
- (xiii) यूरिया के उपयोग को कम करने और नैनो उर्वरकों को बढ़ावा देने के लिए कदम उठाने की आवश्यकता।
- (xiv) नैनो यूरिया स्प्रे की बूंदों का पर्यावरण और मनुष्यों पर प्रभाव।

<u>भाग – III</u>

रसायन एवम् उर्वरक मंत्रालय (उर्वरक विभाग) के प्रतिनिधियों के साथ 'वर्तमान अंतरराष्ट्रीय स्थिति के संदर्भ में उर्वरकों की उपलब्धता और मूल्य अस्थिरता' के सामयिक मुद्दे पर चर्चा।

- 6. तत्पश्चात्, रसायन एवं उर्वरक मंत्रालय (उर्वरक विभाग) के प्रतिनिधियों ने 'वर्तमान अंतर्राष्ट्रीय स्थिति के संदर्भ में उर्वरकों की उपलब्धता और मूल्य अस्थिरता' पर पावर प्वाइंट प्रस्तुति दी जिसके बाद सामियक मुद्दे के कई पहलुओं पर चर्चा की गई। सिमिति द्वारा निम्नलिखित महत्वपूर्ण बिन्दुओं पर चर्चा की गई:-
 - (i) रबी और खरीफ मौसम (2021-22) के दौरान विभिन्न उर्वरकों की आवश्यकता, उपलब्धता और डीबीटी बिक्री।
 - (ii) उर्वरक राजसहायता के लिए बजट।
 - (iii) रूस और यूक्रेन के बीच युद्ध और बेलारूस और रूस के खिलाफ प्रतिबंधों के कारण एमओपी की अंतर्राष्ट्रीय कीमतों में वृद्धि।
 - (iv) पोषक तत्वों एन, पी, के और एस के लिए एनबीएस दरों में संशोधन।
 - (v) डीएपी उर्वरक पर राजसहायता में वृद्धि की आवश्यकता।
 - (vi) 2020-21 और 2021-22 के दौरान उर्वरकों के अंतर्राष्ट्रीय मूल्यों की प्रवृत्ति।
 - (vii) वर्तमान भू-राजनीतिक स्थितियों के कारण उर्वरकों की आवश्यकताओं को पूरा करने के लिए अल्पकालिक और दीर्घकालिक व्यवस्थाएं।
 - (viii) पोटाश की आपूर्ति का मुद्दा और आवश्यकताओं को पूरा करने के प्रयास।
 - (ix) उर्वरकों की आवश्यकताओं और कमी को पूरा करने के लिए समय पर उपायों की आवश्यकता।
 - (x) शीरा से प्राप्त पोटाश की उत्पादन क्षमता बढ़ाने की आवश्यकता है।

- (ix) उर्वरकों में आत्मनिर्भरता प्राप्त करने और संकट को हल करने के लिए अल्पकालिक और दीर्घकालिक रणनीतिक योजनाओं की तत्काल आवश्यकता।
- (xii) उर्वरकों की उपलब्धता के लिए स्थिति की निरंतर निगरानी करने की आवश्यकता।
- 7. उर्वरक विभाग के सचिव और उनके साथ आए अन्य प्रतिनिधियों ने समिति के सदस्यों द्वारा उठाए गए उपर्युक्त मुद्दों का उत्तर दिया।
- 8. सभापित ने सिमिति के समक्ष उपस्थित होने के साथ-साथ सिमिति को बहुमूल्य सूचना देने के लिए सिक्षियों को धन्यवाद दिया। उन्हें वह आवश्यक जानकारी लिखित रूप में जल्द से जल्द प्रदान करने के लिए भी कहा गया जो तत्समय उपलब्ध नहीं थी।
- 9. बैठक की कार्यवाही के शब्दशः अभिलेख की एक प्रति रखी गई है।

तत्पश्चात् समिति की बैठक स्थगित हुई।

रसायन और उर्वरक संबंधी स्थायी समिति (2021-2022) की आठवीं बैठक का कार्यवाही सारांश

समिति की बैठक बुधवार, 04 मई, 2022 को 1100 बजे से 1230 बजे तक समिति कक्ष 'बी', संसदीय सौध, नई दिल्ली में हुई।

उपस्थित

श्रीमती कनिमोझी करुणानिधि – सभापति

सदस्य

लोक सभा

- 2. श्री दिव्येन्द्र अधिकारी
- 3. श्री दीपक बैज
- 4. श्री सत्यदेव पचौरी
- 5. श्री अरुण कुमार सागर
- 6. श्री प्रदीप कुमार सिंह

राज्य सभा

- 7. श्री जी. सी. चंद्रशेखर
- 8. डॉ. अनिल जैन
- 9. श्री जयप्रकाश निषाद
- 10. श्री अरुण सिंह
- 11. श्री विजय पाल सिंह तोमर
- 12. श्री के. वेंलेल्वना

सचिवालय

- 1. श्री विनोद कुमार त्रिपाठी संयुक्त सचिव (वीटी)
- 2. श्री एन. के. झा निदेशक (सीएफ एंड जीपी)
- 3. श्री सी. कल्याणसुंदरम अपर निदेशक (सीएफ एंड जेसी)
- 4. श्री कुलविंदर सिंह उप सचिव
- 5. श्री पन्ना लाल अवर सचिव

साक्षियों की सूची

एक. *रसायन एवं उर्वरक मंत्रालय*

(उर्वरक विभाग)

- 1. श्री सतेन्द्र सिंह, अपर सचिव और वित्तीय सलाहकार
- 2. श्रीमती नीरजा अदीदम, संयुक्त सचिव
- 3. श्रीमती अपर्णा शर्मा, संयुक्त सचिव
- 4. डॉ प्रतिभा ए., आर्थिक सलाहकार
- 5. श्री जोहन टोपनो, उप सचिव

दो. कृषि एवं किसान कल्याण मंत्रालय

<u>[कृषि अनुसंधान एवं शिक्षा विभाग (डेयर)]</u>

- 1. डॉ. टी. महापात्र, सचिव, डेयर एवं महानिदेशक, आईसीएआर
- 2. डॉ. सुरेश के. चौधरी, उप महानिदेशक, आईसीएआर
- 3. डॉ. के. एस. सुब्रमनियन, अनुसंधान निदेशक, टीएनएयू कोयम्बटूर
- 4. डॉ. वी. के. सिंह, निदेशक, आईसीएआर- सीआरआइडीए, हैदराबाद
- 5. डॉ. अश्विनी कुमार, वैज्ञानिक (पीपी), आईसीएआर- सीएसएसआरआई, करनाल, हरियाणा
- 6. डॉ. प्रवीण के. उपाध्याय, वैज्ञानिक (कृषि विज्ञान) आईसीएआर –आईएआरआई, नई दिल्ली
- 7. डॉ. जे. के.परमार, एसोसिएट प्रोफेसर (कृषि रसायन विज्ञान और मृदा विज्ञान) एएयू, आणंद, गुजरात
- 8. डॉ. एन. बी. प्रकाश, प्रोफेसर और डीन (कृषि), यूएएस, जीकेवीके, कर्नाटक
- 9. डॉ. संजय के. शर्मा, अनुसंधान निदेशक, आरवीएसकेवीवी, ग्वालियर
- 10. डॉ. ए. के. सिंह, कृषि आयुक्त, कृषि और किसान कल्याण विभाग

तीन. सार्वजनिक क्षेत्र के उपक्रमों/स्वायत्त संस्थाओं के प्रतिनिधि (उर्वरक क्षेत्र)

- 1. डॉ. योगेंद्र कुमार, निदेशक (विपणन), इफको
- 2. डॉ. तरुनेन्दु सिंह, प्रमुख, कृषि सेवाएं, इफको

भाग- एक

2. सर्वप्रथम, माननीय सभापित ने सिमिति के सदस्यों का बैठक में स्वागत किया। तत्पश्चात, सिमिति ने सिमिति के प्रस्तावित अध्ययन दौरे के प्रस्ताव पर चर्चा की। विचार-विमर्श के बाद, सिमिति ने 10 से 15 जून, 2022 तक श्रीनगर, पुणे, मुंबई और अहमदाबाद का अध्ययन दौरा करने का निर्णय लिया।

<u>भाग – दो</u>

'सतत फसल उत्पादन और मृदा स्वास्थ्य को बनाए रखने के लिए नैनो उर्वरक' पर कृषि एवं किसान कल्याण मंत्रालय (कृषि अनुसंधान एवं शिक्षा विभाग); रसायन एवं उर्वरक मंत्रालय (उर्वरक विभाग) और प्रमुख कृषि अनुसंधान संस्थानों / राज्य कृषि विश्वविद्यालयों के प्रतिनिधियों द्वारा संक्षिप्त जानकारी।

- 3. तत्पश्चात, माननीय सभापित ने कृषि एवं किसान कल्याण मंत्रालय (कृषि अनुसंधान एवं शिक्षा विभाग); रसायन एवं उर्वरक मंत्रालय (उर्वरक विभाग) और प्रमुख कृषि अनुसंधान संस्थानों/राज्य कृषि विश्वविद्यालयों के प्रितिनिधियों का बैठक में स्वागत किया। उनका ध्यान समिति की कार्यवाही की गोपनीयता के संबंध में लोक सभा अध्यक्ष के निदेश के निदेश 55(1) में अंतर्विष्ट उपबंधों की ओर आकर्षित किया गया।
- 4. साक्षियों द्वारा अपना परिचय दिए जाने के पश्चात, सचिव, कृषि अनुसंधान एवं शिक्षा विभाग ने सिमिति को 'सतत फसल उत्पादन और मृदा के स्वास्थ्य को बनाए रखने के लिए नैनो उर्वरक' विषय पर एक पावर प्वाइंट प्रस्तुतीकरण दिया।
- 5. पावर प्वाइंट प्रस्तुतीकरण के बाद विषय से संबंधित कई पहलुओं पर चर्चा की गई। चर्चा के दौरान, सिमिति के माननीय सभापित और सदस्यों ने कई मुद्दों पर प्रश्न पूछे जैसे:-
 - ा. नाइट्रोजन बचत, फसल उपज आदि के परिणामों में दिखाई गई भिन्नता के कारण मृदा परीक्षण आदि के आधार पर देश के विभिन्न कृषि-जलवायु क्षेत्रों में किए गए क्षेत्र परीक्षणों की विस्तृत लेखापरीक्षा की आवश्यकता है।
 - ii. मानव स्वास्थ्य, पर्यावरण, मृदा, जल निकायों, समुद्री जीवन आदि पर नैनो उर्वरकों के दीर्घकालिक प्रभावों पर अनुसंधान की आवश्यकता है।
 - iii. नैनो उर्वरकों के मानकों और गुणवत्ता मानदंडों को बढ़ाने के प्रयास किए जाएं ताकि समय के साथ यह परंपरागत यूरिया के उपयोग का स्थान ले सके।
 - iv. देश के अन्य खाद्य फसलों, क्षेत्रों आदि को कवर करने के लिए क्षेत्र परीक्षणों के दायरे का विस्तार करने की आवश्यकता है।
 - v. नैनो डीएपी, नैनो जिंक, और अन्य पीएण्डके उर्वरकों आदि पर अनुसंधान एवं विकास और क्षेत्र परीक्षणों के परिणाम।

- vi. उर्वरक के सार्वजनिक क्षेत्र के उपक्रमों के साथ इफको द्वारा हस्ताक्षरित समझौता ज्ञापन और उनके द्वारा संयंत्र स्थापित करने की स्थिति के संबंध में।
- vii. इफको द्वारा नैनो उर्वरक प्रौद्योगिकी को सार्वजनिक क्षेत्र के उपक्रमों और निजी उर्वरक कंपनियों के साथ साझा करके नैनो उर्वरकों के उत्पादन को बढ़ावा देने की आवश्यकता है ताकि इसे सस्ती दरों पर प्रचुर मात्रा में उपलब्ध कराया जा सके।
- viii. अधिक फसल उत्पादकता वाले क्षेत्रों में नैनो उर्वरकों के उन्नत क्षेत्र परीक्षणों की आवश्यकता है।
- ix. नैनो उर्वरकों के लाभों के बारे में किसानों की जागरूकता बढ़ाने के लिए और उनके लिए प्रशिक्षण कार्यक्रम आयोजित करने के लिए कदम उठाए जाने चाहिए ताकि वे इसका उपयोग कर सकें।
- x. किसानों का विश्वास हासिल करने के लिए नैनो उर्वरकों के उपयोग के लिए किए गए अध्ययन के परिणामों के प्रचार की आवश्यकता और निजी किसानों द्वारा भी परीक्षण करने की अनुमित दिया जाना।
- xi. देश में उर्वरक उद्योग के भविष्य के लिए योजनाएँ तैयार करना।
- xii. किसानों को ड्रोन आसानी से उपलब्ध कराने की पहल और ग्रामीण उद्यमियों को इसके कुशल उपयोग और अनुप्रयोग के लिए प्रशिक्षण प्रदान करना।
- xiii. किसानों द्वारा कृषि मशीनरी के रूप में ड्रोन की खरीद के लिए सब्सिडी देने की आवश्यकता।
- 6. सिचव, कृषि अनुसंधान एवं शिक्षा विभाग तथा विभागों और कृषि अनुसंधान संस्थानों / राज्य कृषि विश्वविद्यालयों के अन्य प्रतिनिधियों ने सिमिति के सदस्यों द्वारा उठाए गए उपरोक्त मुद्दों पर उत्तर दिया।
- 7. सभापित महोदय ने साक्षियों को सिमित के समक्ष उपस्थित होने और सिमित को बहुमूल्य जानकारी देने के लिए धन्यवाद दिया। उन्हें आवश्यक जानकारी, जो लिखित रूप में उपलब्ध नहीं थी, अतिशीघ्र प्रदान करने के लिए भी कहा गया।
- 8. बैठक की कार्यवाही के शब्दशः रिकार्ड की एक प्रति रखी गई है।

तत्पश्चात, समिति की बैठक स्थगित हुई।

रसायन और उर्वरक संबंधी स्थायी समिति (2021-22)

समिति की नौवीं बैठक का कार्यवाही सारांश

सिमति की बैठक गुरूवार, 04 अगस्त, 2022 को 1500 बजे से 1645 बजे तक सिमति कक्ष 'सी', संसदीय सौध नई दिल्ली में हुई।

उपस्थित

श्रीमती कनिमोझी करूणानिधि, सभापति

लोकसभा

- 2. श्री रमाकान्त भार्गव
- 3. श्री राजेश नारणभाई चुड़ासमा
- 4. श्री रमेश चंदप्पा जिगाजिनागि
- 5. श्री कृपानाथ मल्लाह
- 6. श्री सत्यदेव पचौरी
- 7. डॉ.एम.के. विष्णु प्रसाद
- 8. श्री अरुण कुमार सागर
- 9. श्री इंद्रा हांग सुब्बा

राज्य सभा

- 10. श्री अयोध्या रामी रेड्डी आला
- 11. डा. अनिल जैन
- 12. श्री अरूण सिंह
- 13. श्री विजय पाल सिंह तोमर
- 14. श्री के. वेंलेल्वना

<u>सचिवालय</u>

- 1. श्री विनय कुमार मोहन संयुक्त सचिव
- 2. श्री नवीन कुमार झा निदेशक

- 3. श्री कुलविन्दर सिंह उप सचिव
- 4. श्री पन्ना लाल अवर सचिव

प्रतिनिधियों की सूची

रसायन एवं उर्वरक मंत्रालय (उर्वरक विभाग)

- 1. सुश्री आरती आहुजा, सचिव (उर्वरक)
- 2. श्री सतेन्द्र सिंह, अपर सचिव और वित्तीय सलाहकार
- 3. सुश्री नीरजा आदिदाम, संयुक्त सचिव
- 4. श्री के गुरूमुर्ति, संयुक्त सचिव

नागर विमानन मंत्रालय :

- 1. श्री अम्बर दुबे, संयुक्त सचिव
- 2. श्री सूफीयान अहमद, सहायक सचिव

वैज्ञानिक:

- डॉ. के. एस. सुब्रमणियम, निदेशक, अनुसंधान और शीर्ष नैनो विज्ञान प्रौद्योगिकी, कोयम्बतूर, तिमलनाडु।
- 2. डॉ. सुधांशु सिंह, निदेशक, आईआरआरआई –आईएसएआरसी, वाराणसी, उत्तर प्रदेश

किसान:

- 1. श्री राम नारायण, रेवाडी, हरियाणा
- 2. श्री केतनभाई जसवाई पटेल, आणद, गुजरात
- 3. श्री राम शरण वर्मा, बाराबंकी, उत्तर प्रदेश

डीएआरई/आईसीएआर के प्रतिनिधि

1. डॉ. सुरेश के. चौधरी, डीडीजी, आईसीएआर

इफको के प्रतिनिधि

- 1. श्री योगेन्द्र कुमार, निदेशक विपणन, इफको
- श्री रजनीश पांडेय, मुख्य प्रबंधक, इफको
- 3. डॉ. तरुनेन्दु सिंह, वरिष्ठ प्रबंधक (एएस), इफको

- 2. सर्वप्रथम सभापति ने सिमति की बैठक में सदस्यों का स्वागत किया जिसे निम्नलिखित प्रारूप की गई कार्रवाई प्रतिवेदनों पर विचार करने और स्वीकार करने के लिए आयोजित की गई थी:
 - (i) रसायन एवं उर्वरक मंत्रालय (औषध विभाग) के "कोविड प्रबंधन हेतु दवाओं और चिकित्सा उपकरणों की उपलब्धता" विषयक इकतीसवें प्रतिवेदन (17वीं लोक सभा) में अंतर्विष्ट टिप्पणियों/ सिफारिशों पर सरकार द्वारा की-गई-कार्रवाई संबंधी पैंतीसवां प्रतिवेदन।
 - (ii) रसायन एवं उर्वरक मंत्रालय (उर्वरक विभाग) की 'अनुदानों की मांगों 2022-23' से संबंधित बत्तीसवें प्रतिवेदन (17वीं लोक सभा) में अंतर्विष्ट टिप्पणियों/सिफारिशों पर सरकार द्वारा की-गई-कार्रवाई संबंधी छत्तीसवां प्रतिवेदन।
 - (iii) रसायन एवं उर्वरक मंत्रालय (रसायन एवं पेट्रो-रसायन विभाग) की 'अनुदानों की मांगों 2022-23' से संबंधित तैंतीसवें प्रतिवेदन (17वीं लोक सभा) में अंतर्विष्ट टिप्पणियों/सिफारिशों पर सरकार द्वारा की-गई-कार्रवाई संबंधी सैंतीसवां प्रतिवेदन।
 - (iv) रसायन एवं उर्वरक मंत्रालय (औषध विभाग) की 'अनुदानों की मांगों 2022-23' से संबंधित चौंतीसवें प्रतिवेदन (17वीं लोक सभा) में अंतर्विष्ट टिप्पणियों/सिफारिशों पर सरकार द्वारा की-गई-कार्रवाई संबंधी अड़तीसवां प्रतिवेदन।
- 3. प्रारूप प्रतिवेदनों में निहित महत्वपूर्ण टिप्पणियों/सिफारिशों का अवलोकन करते हुए माननीय सभापति ने सदस्यों के विचारों/सुझावों हेतु अनुरोध किया।
- 4. तत्पश्चात् सिमति ने प्रारूप की गई कार्रवाई संबंधी प्रतिवेदनों को एक-एक करके विचारार्थ लिया और कुछ विचार-विमर्श के बाद उन्हें अपनाया।
- 5. इसके बाद समिति ने माननीय सभापति को की गई कार्रवाई संबंधी प्रतिवेदनों को अंतिम रूप देने और इसे संसद में प्रस्तुत किये जाने के लिए प्राधिकृत किया।

भाग दो

6. तत्पश्चात् रसायन एवं उर्वरक मंत्रालय और नागर विमानन मंत्रालय के प्रतिनिधियों को अंदर बुलाया गया और माननीय सभापति ने 'सतत फसल उत्पादन और मृदा स्वास्थ्य बनाए रखे जाने के लिए नैनो उर्वरक' विषय पर उनके विचारों को सुनने के लिए आयोजित सिमिति की बैठक में उनका स्वागत किया। सिमिति की कार्यवाही को 'गोपनीय' रखने के लिए सिक्षियों पर जोर देते हुए, माननीय सभापित ने उन्हें इस विषय के संबंध में अपने विचार / सुझाव प्रस्तुत करने के लिए कहा।

- 7. रसायन एवं उर्वरक मंत्रालय और नागर विमानन मंत्रालय के प्रतिनिधियों ने तदनुसार विभिन्न पहलुओं को शामिल करते हुए अपने विचार प्रस्तुत किए। नागर विमानन मंत्रालय के प्रतिनिधियों ने पावर प्वाइंट प्रस्तुतीकरण दिया। उन्होंने सदस्यों के प्रश्नों का भी उत्तर दिया।
- 8. तदनुसार नागर विमानन मंत्रालय के संयुक्त सचिव ने किसानों को नैनो यूरिया के लाभों; नैनो यूरिया (तरल) का वाणिज्यिक उत्पादन; नैनो यूरिया (तरल) के लिए संवर्धन, प्रचार और विपणन संबंधी प्रयास; नैनो यूरिया संबंधी संवर्धनात्मक और जागरूकता कार्यक्रम; नैनो यूरिया छिड़काव को बढ़ावा दिये जाने के संदर्भ में प्रयास; किसानों के क्षेत्र परीक्षण; नैनो उर्वरक परीक्षणों के संक्षिप्त परिणाम; पर्यावरण के लिए नैनो यूरिया का लाभ; कम पर्यावरण दायरे के संदर्भ में लाभ; जीएचजी के उत्सर्जन पर नैनो यूरिया का प्रभाव और इफको नैनो उर्वरकों का सुरक्षा मूल्यांकन में संबंधित विभिन्न मुद्दों का अवलोकन किया और एक पावर प्वाइंट प्रस्तुतीकरण दिया।
- 9. इसके बाद सदस्यों ने विभिन्न मुद्दों पर कितपय विशिष्ट प्रश्न उठाए, जिनमें अन्य बातों के साथ-साथ नैनो यूरिया के छिड़काव में ड्रोन का उपयोग, नैनो यूरिया की छिड़काव लागत को कम किये जाने के लिए शुरू किए गए कदम, ड्रोन की कीमत, उनके रखरखाव और किसानों द्वारा उपयोग किया जाना, नैनो यूरिया के उपयोग से विभिन्न फसलों के उत्पादन में वृद्धि, किसानों को नैनो यूरिया के लाभ आदि शामिल थे। दोनों मंत्रालयों के प्रतिनिधियों ने सदस्यों द्वारा उठाए गए प्रश्नों का उत्तर दिया।
- 10. माननीय सभापित ने साक्षियों का सिमित के समक्ष उपस्थित होने और इस विषय पर अपनी टिप्पणियां/सुझाव प्रस्तुत करने के लिए धन्यवाद किया। माननीय सभापित ने प्रतिनिधियों से एक सप्ताह के भीतर अपने लिखित उत्तर/अतिरिक्त जानकारी प्रस्तुत करने के लिए भी कहा।

शब्दशः कार्यवाही के रिकॉर्ड किए गए ऑडियो की एक प्रति रिकॉर्ड में रखी गई।.

तत्पश्चात् समिति की बैठक स्थगित हुई।

रसायन और उर्वरक संबंधी स्थायी समिति (2022-23)

समिति की नौवीं बैठक का कार्यवाही सारांश

समिति की बैठक मंगलवार, 14 फरवरी, 22023 को 1100 बजे से 1300 बजे तक समिति कक्ष 'डी', संसदीय सौध, नई दिल्ली में हुई।

उपस्थित

डॉ. शशि थरूर - सभापति

सदस्य

लोक सभा

- 2. श्री दिव्येन्दु अधिकारी
- 3. श्री कृपानाथ मल्लाह
- 4. श्री सत्यदेव पचौरी
- 5. श्री अरूण कुमार सागर
- 6. श्री प्रदीप कुमार सिंह
- 7. श्री उदय प्रताप सिंह
- 8. श्री प्रभुभाई नागरभाई वसावा

राज्य सभा

- 9. डा. अनिल जैन
- 10. श्री अरूण सिंह

सचिवालय

श्री विनय कुमार मोहन - संयुक्त सचिव
 श्री एन. के. झा - निदेशक
 श्रीमती गीता परमार - अपर निदेशक
 श्री कुलविंदर सिंह - उप सचिव
 श्री पन्नालाल - अवर सचिव

<u>साक्षी</u>

रसायन और उर्वरक मंत्रालय (उर्वरक विभाग) के प्रतिनिधि

सचिव (उर्वरक) श्री अरूण सिंघल 1. अपर सचिव और वित्तीय सलाहकार श्री संजय रस्तोगी 2. सुश्री नीरजा अदिदम - अपर सचिव 3. सुश्री अनीता सी मेश्राम - संयुक्त सचिव 4. श्री अरविंद कुमार - संयुक्त सचिव 5. श्री प्रियरंजन संयुक्त सचिव, कृषि विभाग 6. डॉ. प्रतिभा ए आर्थिक सलाहकार 7.

श्री अवतार एस. संध् - सीसीए

9. डॉ. टीना सोनी - निदेशक

10. श्री एम. सुब्रमनियम - निदेशक

2. सर्वप्रथम, सभापित ने उर्वरक विभाग से संबंधित 'सतत फसल उत्पादन और मिट्टी की गुणवत्ता बनाए रखने के लिए नैनो उर्वरक' विषय संबंधी प्रारूप प्रतिवेदन पर विचार करने और उसे स्वीकार करने के साथ-साथ ही वर्ष 2023-24 की अनुदानों की मांगों के संबंध में उर्वरक विभाग के प्रतिनिधियों का मौखिक साक्ष्य लेने के लिए आयोजित समिति की बैठक में सदस्यों का स्वागत किया लिए।

3. XXX XXX XXX XXX.

4.	XXX	XXX	XXX	XXX
5.	XXX	XXX	XXX	xxx
6.	XXX	XXX	XXX	XXX.

7. बैठक की कार्यवाहियों के शब्दश: रिकार्ड की प्रति रखी गई है।

(तत्पश्चात साक्षी साक्ष्य देकर चले गए।)

तत्पश्चात्, सिमिति ने उर्वरक विभाग से संबंधित 'सतत फसल उत्पादन और मिट्टी की गुणवत्ता बनाए रखने के लिए नैनो उर्वरक' विषयक प्रारूप प्रतिवेदन पर विचार किया और इसे बिना किसी पिरवर्तन/संशोधन के स्वीकार किया। तत्पश्चात्, सिमिति ने रसायन और उर्वरक मंत्रालय के उर्वरक विभाग से प्राप्त तथ्यात्मक सत्यापन के आलोक में प्रतिवेदन को अंतिम रूप देने और इसे संसद में प्रस्तुत करने हेतु सभापित को प्राधिकृत किया।

तत्पश्चात्, समिति की बैठक स्थगित हुई।